Skip to main content
Log in

A Representation of the Solution of the Stokes Equations in the Half Space \(\mathbb {R}^{3}_{+}\): Application to Spatial and Temporal Estimates of the Pressure

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

A solution formula of the Stokes problem in the half space \(\mathbb {R}^{3}_{+}\) is obtained by focusing on the normal derivative of the pressure at the boundary. This explicit formula can be used to estimate the \(L^\infty \) norm of the pressure and its normal derivative at the boundary that quantifies the initial layer depending on regularity and compatibility conditions of the initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bae, H.-O., Choe, H.J., Jin, B.J.: Pressure representation and boundary regularity of the Navier–Stokes equaitons with slip boundary condtion. J. Differ. Equ. 244, 2741–2763 (2008)

    Article  ADS  Google Scholar 

  2. Bae, H.-O., Jin, B.J.: Temporal and spatial decay rates of Navier–Stokes solutions in exterior domains. Bull. Korean Math. Soc. 44(3), 547–567 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bae, H.-O., Jin, B.J.: Asymptotic behavior of Stokes solutions in \(2D\) exterior domains. J. Math. Fluid Mech. 10, 423–433 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bae, H.-O., Roh, J.: Weighted estimates for the incompressible fluid in exterior domains. J. Math. Anal. Appl. 355, 846–854 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bae, H.-O., Roh, J.: Optimal weighted estimates of the flows in exterior domains. Nonlinear Anal. 73, 1350–1363 (2010)

    Article  MathSciNet  Google Scholar 

  6. Berker, R.: Contrainte sur une paroi en contact avec un fluide visqueux classique, un fluide de Stokes, un fluide de Coleman-Noll. C. R. Acad. Sci. Paris 258, 5144–5147 (1964)

    MathSciNet  Google Scholar 

  7. Berselli, L.C., Galdi, G.P.: Regularity criteria involving the pressure for the weak solutions to the Navier–Stokes equations. Proc. Am. Math. Soc. 130, 3585–3595 (2002)

    Article  MathSciNet  Google Scholar 

  8. Chorin, A.J.: Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785–796 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  9. Cottet, G.-H., Koumoutsakos, P.D.: Vortex Methods—Theory and Practice. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  10. Guenther, R.B., Lee, J.W.: Patial Differential Equations of Mathematical Physics and Integral Equations. Dover Publications, INC., Mineola (1996)

    Google Scholar 

  11. Bikri, I., Guenther, R.B., Thomann, E.A.: The Dirichlet to Neumann Map—An Application to the Stokes Problem in Half Space. Discrete and Continuous Dynamical Systems Series, vol. 3 (2010)

  12. Isakov, V.: Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, vol. 127. Springer, New York (1998)

    Book  Google Scholar 

  13. Kang, K.: Unbounded normal derivatives for the Stokes system near boundary. Math. Ann. 331, 87–109 (2005)

    Article  MathSciNet  Google Scholar 

  14. Kochneff, E.: The Riesz Transforms of the Gaussian. Ill. J. Math. 39, 140–142 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, 2nd English edn, translated from the Russian by Richard A. Silverman and John Chu, New York (1969)

  16. Magnus, W., Oberhettinger, F., Soni, F.P.: Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd enlarged edn. Die Grundlehren der mathematischen Wissenschaften, Band 52. Springer, New York (1966)

  17. Seregin, G., Sverak, V.: On a bounded shear flow in half-space. Zap. Nauchn. Semin. POMI 385, 200–205 (2010)

  18. Solonikov, V.A.: Estimates of the solutions of a nonstationary linearized system of Navier–Stokes equations. Am. Math. Soc. Transl. (2) 75, 1–116 (1968)

    Google Scholar 

  19. Solonnikov, V.A.: Estimates of the solutions of the nonstationary Navier–Stokes system, (Russian) Boundary value problems of mathematical physics and related questions in the theory of functions, 7. Zap. Nauka. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 38, 153–231 (1973) (Translated in J. Soviet Math. 8(4), 467–529)

  20. Solonnikov, V.A.: On the theory of nonstationary hydrodynamic potentials. In: The Navier–Stokes Equations: Theory and Numerical Methods (Varenna, 2000), Lecture Notes in Pure and Appl. Math., vol. 223, pp. 113–129. Dekker, New York (2002)

  21. Solonnikov, V.A.: Potential theory for the nonstationary Stokes problem in nonconvex domains. In: Birman, M., et al. (eds.) Nonlinear Problems in Mathematical Physics and Related Topics I, pp. 349–372. Kluwer Academic, New York (2002)

    Chapter  Google Scholar 

  22. Solonnikov, V.A.: Estimates for solutions of the nonstationary Stokes problem in anisotropic Sobolev spaces and estimates for the resolvent of the Stokes operator (Russian. Russian summary) Uspekhi Mat. Nauk 58(2)(350), 123–156 (2003); translation in Russian Math. Surveys 58(2), 331–365 (2003)

  23. Solonnikov, V.A.: On non stationary Stokes problem and Navier–Stokes problem in a half-space with initial data nondecreasing at infinity, function theory and applications. J. Math. Sci. 114(5), 1726–1740 (2003)

    Article  MathSciNet  Google Scholar 

  24. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  25. Struwe, M.: On a Serrin-type regularity criterion for the Navier–Stokes equations in terms of the pressure. J. Math. Fluid Mech. 9, 235–242 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. Ukai, S.: A solution formula for the Stokes equation in \(\mathbb{R}^n_{+}\). Commun. Pure Appl. Math. XL, 611–621 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

EAT acknowledges the support of the Institute of Mathematics and its Applications in the form of the a New Professor Fellowship for the year 2012–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HoeWoon Kim.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by V.A. Solonnikov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Thomann, E.A. & Guenther, R.B. A Representation of the Solution of the Stokes Equations in the Half Space \(\mathbb {R}^{3}_{+}\): Application to Spatial and Temporal Estimates of the Pressure. J. Math. Fluid Mech. 21, 16 (2019). https://doi.org/10.1007/s00021-019-0419-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0419-4

Mathematics Subject Classification

Keywords

Navigation