Skip to main content
Log in

Solvability for Stokes System in Hölder Spaces in Bounded domains and Its Applications

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider Stokes system in bounded convex domains and we present conditions of given data, in particular, boundary data, which ensure Hölder continuity of solutions. For Hölder continuous solutions for the Stokes system the normal component of boundary data requires a bit more regular than boundary data of Hölder continuous solutions for the heat equation. We also construct an example, which shows that Hölder continuity is no longer valid, unless the proposed condition of boundary data is fulfilled. As an application, we consider a certain general types of nonlinear systems coupled to fluid equations and local well-posedness is established in Hölder spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergh, J., Lofström, J.: Interpolation Spaces, An Introduction. Springer, Berlin (1976)

    Book  Google Scholar 

  2. Birman, MSh, Hildebrandt, S., Solonnikov, V.A., Uraltseva, N.N.: Nonlinear Problems in Mathematical Physics and Rlated Topics. I. International Mathematical Series, vol. 1. Kluwer Academic, New York (2002)

    MATH  Google Scholar 

  3. Chae, M., Kang, K., Lee, J.: On Existence of the smooth solutions to the coupled chemotaxis-fluid equations. Discrete Contin. Dyn. Syst. A 33(6), 2271–2297 (2013)

    Article  MathSciNet  Google Scholar 

  4. Chae, M., Kang, K., Lee, J.: Global existence and temporal decay in Keller–Segel models coupled to fiuid equations. Commun. Partial Differ. Equ. 39(7), 1205–1235 (2014)

    Article  Google Scholar 

  5. Chang, T., Choe, H.: Maximum modulus estimate for the solution of the Stokes equations. J. Differ. Equ. 254(7), 2682–2704 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. Chang, T., Jin, B.: Initial and boundary value problem of the unsteady Navier–Stokes system in the half space with H\(\ddot{\rm o}\)lder continuous boundary data. J. Math. Anal. Appl. 433(2), 1846–1869 (2016)

    Article  MathSciNet  Google Scholar 

  7. Chertock, A., Fellner, K., Kurganov, A., Lorz, A., Markowich, P.A.: Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach. J. Fluid Mech. 694, 155–190 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  8. Duan, R., Lorz, A., Markowich, P.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Partial Diff. Equ. 35(9), 1635–1673 (2010)

    Article  MathSciNet  Google Scholar 

  9. Fabes, E., Mendez, O., Mitrea, M.: Boundary layers on Sobolev–Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal 159, 323–368 (1998)

    Article  MathSciNet  Google Scholar 

  10. Francesco, M.D., Lorz, A., Markowich, P.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. A 28(4), 1437–1453 (2010)

    Article  MathSciNet  Google Scholar 

  11. Giga, Y., Matsui, S., Shimizu, Y.: On estimates in Hardy spaces for the Stokes flow in a half space. Math. Z. 231(2), 383–396 (1999)

    Article  MathSciNet  Google Scholar 

  12. Jerison, D., Kenig, C.E.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal 130, 161–219 (1995)

    Article  MathSciNet  Google Scholar 

  13. Kang, K.: On boundary regularity of the Navier–Stokes equations. Commun. Partial Differ. Equ. 29(7–8), 955–987 (2004)

    Article  MathSciNet  Google Scholar 

  14. Koch, H., Solonnikov, V.A.: \(L_p\)-Estimates for a solution to the nonstationary Stokes equations. J. Math. Sci. 106(3), 3042–3072 (2001)

    Article  MathSciNet  Google Scholar 

  15. Ladyženskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and Quasilinear Equations of Parabolic Type, (Russian). Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence (1968)

  16. Lorz, A.: Coupled chemotaxis fluid model. Math. Models Methods Appl. Sci. 20(6), 987–1004 (2010)

    Article  MathSciNet  Google Scholar 

  17. Maremonti, P.: Stokes and Navier–Stokes problems in the half-space: existence and uniqueness of solutions non converging to a limit at infinity. Zap. Nauchn. Sem. POMI. 39, 176–240, 362 (2008); translation in J. Math. Sci. (N. Y.) 159(4), 486–523 (2009)

  18. Maremonti, P., Staria, G.: On the nonstationary Stokes equations in half-space with continuous initial data. Zap. Nauchn. Sem. POMI. 33, 118–167, 295 (2003); translation in J. Math. Sci. (N. Y.) 127(2), 1886–1914 (2005)

  19. Solonnikov, V.A.: Estimates for solutions of nonstationary Navier–Stokes equations. Zap. Naučn. Sem. LOMI. 38, 153–231 (1973); translation in J. Math. Sci. (N. Y.) 8(4), 467–529 (1977)

    Article  Google Scholar 

  20. Solonnikov, V. A.: On the theory of nonstationary hydrodinamic potential. In: Lecture Notes in Pure and Applied Mathematics. The Navier–Stokes Equadtions: Theory and Numerical Methods, pp. 113–129 (2002)

  21. Solonnikov, V.A.: On nonstationary Stokes problem and Navier–Stokes problem in a half-space with initial data nondecreasing at infinity. Function theory and applications. J. Math. Sci. (N. Y.) 114(5), 1726–1740 (2003)

    Article  MathSciNet  Google Scholar 

  22. Solonnikov, V.A.: An initial-boundary value problem for a generalized system of Stokes equations in a half-space. Zap. Naučn. Sem. POMI. 224–275, 271 (2000); translation in J. Math. Sci. (N. Y.) 115(6), 2832–2861 (2003)

  23. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. PNAS 102(7), 2277–2282 (2005)

    Article  ADS  Google Scholar 

  24. Winkler, M.: Global large data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37(2), 319–351 (2012)

    Article  MathSciNet  Google Scholar 

  25. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal 211(2), 455–487 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongkeun Chang.

Additional information

Communicated by G.P. Galdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, T., Kang, K. Solvability for Stokes System in Hölder Spaces in Bounded domains and Its Applications. J. Math. Fluid Mech. 20, 1857–1888 (2018). https://doi.org/10.1007/s00021-018-0392-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-018-0392-3

Keywords

Mathematics Subject Classification

Navigation