Skip to main content
Log in

Global Wellposedness for the 3D Inhomogeneous Incompressible Navier–Stokes Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

This paper addresses the three-dimensional Navier–Stokes equations for an incompressible fluid whose density is permitted to be inhomogeneous. We establish a theorem of global existence and uniqueness of strong solutions for initial data with small \({\dot{H}^{\frac12}}\) -norm, which also satisfies a natural compatibility condition. A key point of the theorem is that the initial density need not be strictly positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abidi H., Paicu M.: Existence globale pour un fluide inhomogéne. Ann. Inst. Fourier (Grenoble) 57, 883–917 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams Robert A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  3. Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Comm. Pure Appl. Math. 12(4), 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  4. Antontesv S.A., Kazhikov A.V., Monakhov V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. North-Holland, Amsterdam (1990)

    Google Scholar 

  5. Bahouri H., Chemin J.Y., Danchin R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, New York (2011)

    Book  MATH  Google Scholar 

  6. Brezis H., Gallouet T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. T. M. A. 4, 677–681 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezis H., Wainger S.: A note on limiting cases of Sobolev embedding and convolution inequalities. Comm. Partial Differ. Equ. 5, 773–789 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bergh J., Löfström J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer, Berlin-New York (1976)

    Google Scholar 

  9. Cannone, M.: Harmonic analysis tools for solving the incompressible Navier–Stokes equations. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. III, pp. 161–244. North-Holland, Amsterdam (2004)

  10. Chemin J.-Y., Gallagher I., Paicu M.: Global regularity for some classes of large solutions to the Navier–Stokes equations. Ann. Math. 173(2), 983–1012 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cho Y., Kim H.: Unique solvability for the density-dependent Navier–Stokes equations. Nonlinear Anal. 59(4), 465–489 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Choe H.Y., Kim H.: Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids. Comm. Partial Differ. Equ. 28(5–6), 1183–1201 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Danchin R.: Density-dependent incompressible viscous fluids in critical spaces. Proc. R. Soc. Edinburgh Sect. A 133, 1311–1334 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Danchin R., Mucha P. B.: A critical functional framework for inhomogeneous Navier–Stokes equations in the half-plane. J. Funct. Anal. 256(3), 881–927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Desjardins B.: Regularity results for two-dimensional flows of multiphase viscous fluids. Arch. Ration. Mech. Anal. 137, 135–158 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. DiPerna, R.J., Lions, P.L.: Equations différentielles ordinaires et équations de transport avec des coefficients irréguliers. In: Séminaire EDP 1988–1989, Ecole Polytechnique, Palaiseau, 1989

  17. Fujita H., Kato T.: On the Navier–Stokes initial value problem. I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  18. Galdi G.P.: An introduction to the Mathematical Theory of Navier–Stokes Equations, Vol. I: Linearized Steady Problems 38. Springer, New York (1994)

    MATH  Google Scholar 

  19. Gui G.L., Huang J.C., Zhang P.: Large global solutions to 3-D inhomogeneous Navier–Stokes equations slowly varying in one variable. J. Funct. Anal. 261, 3181–3210 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, J.C., Paicu, M., Zhang, P.: Global wellposedness to incompressible inhomogeneous fluid system with bounded density and non-Lipschitz velocity. arXiv, 1212–3917

  21. Huang X.D., Li J., Xin Z.P.: Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier–Stokes equations. Comm. Pure Appl. Math. 65(4), 549–585 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang X.D., Wang Y.: Global strong solution with vacuum to the 2D nonhomogeneous incompressible MHD system. J. Differ. Equ. 254(2), 511–527 (2013)

    Article  ADS  MATH  Google Scholar 

  23. Kazhikov A.V.: Resolution of boundary value problems for nonhomogeneous viscous fluids. Dokl. Akad. Nauk. 216, 1008–1010 (1974)

    ADS  Google Scholar 

  24. Kim H.: A blow-up criterion for the nonhomogeneous incompressible Navier–Stokes equations. SIAM J. Math. Anal. 37(5), 1417–1434 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Koch H., Tataru D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 15(1), 22–35 (2001)

    Article  MathSciNet  Google Scholar 

  26. Ladyzhenskaya O., Solonnikov V.A.: Unique solvability of an initial and boundary value problem for viscous incompressible non-homogeneous fluids. J. Soviet Math. 9, 697–749 (1978)

    Article  MATH  Google Scholar 

  27. Lions P.L.: Mathematical Topics in Fluid Mechanics Vol I Incompressible Models, Oxford Lecture Series in Math. and Its Appl., 3. Oxford University Press, New York (1996)

    Google Scholar 

  28. Paicu, M., Zhang, P., Zhang, Z.F.: Global unique solvability of inhomogeneous Navier–Stokes equations with bounded density. arXiv, 1301/0160

  29. Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Rational Mech. Anal. 9(1), 187–195 (1962)

    Google Scholar 

  30. Simon J.: Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure. SIAM J. Math. Anal. 21, 1093–1117 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tartar L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, New York (2007)

    MATH  Google Scholar 

  32. Tribel H.: Interpolation theory, Function Spaces, Differential Operators, North-Holland Mathematical Theory, 18. North-Holland Publishing Co., Amsterdam-New York (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Craig.

Additional information

Communicated by S. Friedlander

The research of W. Craig is supported in part by a Killam Research Fellowship, the Canada Research Chairs Program and NSERC through grant number 238452–11. The research of X. D. Huang is partially supported by the National Center for Mathematics and Interdisciplinary Sciences, CAS and NNSFC Grant No.11101392. The research of Y. Wang is supported in part by a Canada Research Chairs Postdoctoral Fellowship at McMaster University and NNSFC Grant No. 11241004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, W., Huang, X. & Wang, Y. Global Wellposedness for the 3D Inhomogeneous Incompressible Navier–Stokes Equations. J. Math. Fluid Mech. 15, 747–758 (2013). https://doi.org/10.1007/s00021-013-0133-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-013-0133-6

Mathematics Subject Classfication

Keywords

Navigation