Skip to main content

Advertisement

Log in

Differential effects of putative N-glycosylation sites in human Tau on Alzheimer’s disease-related neurodegeneration

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Amyloid assemblies of Tau are associated with Alzheimer’s disease (AD). In AD Tau undergoes several abnormal post-translational modifications, including hyperphosphorylation and glycosylation, which impact disease progression. N-glycosylated Tau was reported to be found in AD brain tissues but not in healthy counterparts. This is surprising since Tau is a cytosolic protein whereas N-glycosylation occurs in the ER-Golgi. Previous in vitro studies indicated that N-glycosylation of Tau facilitated its phosphorylation and contributed to maintenance of its Paired Helical Filament structure. However, the specific Tau residue(s) that undergo N-glycosylation and their effect on Tau-engendered pathology are unknown. High-performance liquid chromatography and mass spectrometry (LC–MS) analysis indicated that both N359 and N410 were N-glycosylated in wild-type (WT) human Tau (hTau) expressed in human SH-SY5Y cells. Asparagine to glutamine mutants, which cannot undergo N-glycosylation, at each of three putative N-glycosylation sites in hTau (N167Q, N359Q, and N410Q) were generated and expressed in SH-SY5Y cells and in transgenic Drosophila. The mutants modulated the levels of hTau phosphorylation in a site-dependent manner in both cell and fly models. Additionally, N359Q ameliorated, whereas N410Q exacerbated various aspects of hTau-engendered neurodegeneration in transgenic flies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

CLN5:

Ceroid-lipofuscinosis neuronal protein 5

dgPhy:

Deglycosylated phytase

DTT:

Dl-Dithiothreitol

GlcNAc:

β-N-Acetylglucosamine

GSK3β:

Glycogen synthase kinase 3β

hTau:

Human Tau

NFTs:

Neurofibrillary tangles

OST:

Oligosaccharyltransferase

PHFs:

Paired helical filaments

PKA:

Protein kinase A (cyclic AMP-dependent protein kinase)

PP2:

Protein phosphatase 2

PP5:

Protein phosphatase 5

SP:

Signal peptide

SP-hTau:

Signal peptide human Tau

TRP-1:

Tyrosine-related protein 1

WT:

Wild type

References

  1. Karantzoulis S, Galvin JE (2011) Distinguishing Alzheimer's disease from other major forms of dementia. Expert Rev Neurother 11(11):1579–1591. https://doi.org/10.1586/ern.11.155

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kumar A, Singh A, Ekavali (2015) A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacol Rep 67(2):195–203. https://doi.org/10.1016/j.pharep.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  3. Van Cauwenberghe C, Van Broeckhoven C, Sleegers K (2016) The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 18(5):421–430. https://doi.org/10.1038/gim.2015.117

    Article  PubMed  Google Scholar 

  4. De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV (2012) Alzheimer's disease. Subcell Biochem 65:329–352. https://doi.org/10.1007/978-94-007-5416-4_14

    Article  CAS  PubMed  Google Scholar 

  5. Bloom GS (2014) Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71(4):505–508. https://doi.org/10.1001/jamaneurol.2013.5847

    Article  PubMed  Google Scholar 

  6. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):1–23. https://doi.org/10.1101/cshperspect.a006189

    Article  CAS  Google Scholar 

  7. Brier MR, Gordon B, Friedrichsen K, McCarthy J, Stern A, Christensen J, Owen C, Aldea P, Su Y, Hassenstab J, Cairns NJ, Holtzman DM, Fagan AM, Morris JC, Benzinger TL, Ances BM (2016) Tau and Abeta imaging, CSF measures, and cognition in Alzheimer's disease. Sci Transl Med 8(338):338–366. https://doi.org/10.1126/scitranslmed.aaf2362

    Article  CAS  Google Scholar 

  8. Kosik KS (1993) The molecular and cellular biology of tau. Brain Pathol 3(1):39–43. https://doi.org/10.1111/j.1750-3639.1993.tb00724.x

    Article  CAS  PubMed  Google Scholar 

  9. Iqbal K, Liu F, Gong CX, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7(8):656–664. https://doi.org/10.2174/156720510793611592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17(1):5–21. https://doi.org/10.1038/nrn.2015.1

    Article  CAS  PubMed  Google Scholar 

  11. Gong CX, Liu F, Grundke-Iqbal I, Iqbal K (2005) Post-translational modifications of tau protein in Alzheimer's disease. J Neural Transm (Vienna) 112(6):813–838. https://doi.org/10.1007/s00702-004-0221-0

    Article  CAS  Google Scholar 

  12. Martin L, Latypova X, Terro F (2011) Post-translational modifications of tau protein: implications for Alzheimer's disease. Neurochem Int 58(4):458–471. https://doi.org/10.1016/j.neuint.2010.12.023

    Article  CAS  PubMed  Google Scholar 

  13. Avila J (2018) Our working point of view of tau protein. J Alzheimers Dis 62(3):1277–1285. https://doi.org/10.3233/jad-170600

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chong FP, Ng KY, Koh RY, Chye SM (2018) Tau proteins and tauopathies in Alzheimer's disease. Cell Mol Neurobiol 38(5):965–980. https://doi.org/10.1007/s10571-017-0574-1

    Article  CAS  PubMed  Google Scholar 

  15. Kolarova M, Garcia-Sierra F, Bartos A, Ricny J, Ripova D (2012) Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimers Dis 2012:1–13. https://doi.org/10.1155/2012/731526

    Article  CAS  Google Scholar 

  16. Zachara N, Akimoto Y, Hart GW (2015) The O-GlcNAc Modification. In: Varki A, Cummings RD, Esko JD et al. (eds) Essentials of Glycobiology. Cold Spring Harbor (NY). pp 239–251. https://doi.org/10.1101/glycobiology.3e.019

  17. Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc Natl Acad Sci USA 101(29):10804–10809. https://doi.org/10.1073/pnas.0400348101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2009) Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer's disease. J Neurochem 111(1):242–249. https://doi.org/10.1111/j.1471-4159.2009.06320.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robertson LA, Moya KL, Breen KC (2004) The potential role of tau protein O-glycosylation in Alzheimer's disease. J Alzheimers Dis 6(5):489–495. https://doi.org/10.3233/JAD-2004-6505

    Article  CAS  PubMed  Google Scholar 

  20. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80:825–858. https://doi.org/10.1146/annurev-biochem-060608-102511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deng Y, Li B, Liu Y, Iqbal K, Grundke-Iqbal I, Gong CX (2009) Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: Implication for Alzheimer's disease. Am J Pathol 175(5):2089–2098. https://doi.org/10.2353/ajpath.2009.090157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sato Y, Naito Y, Grundke-Iqbal I, Iqbal K, Endo T (2001) Analysis of N-glycans of pathological tau: possible occurrence of aberrant processing of tau in Alzheimer's disease. FEBS Lett 496(2–3):152–160. https://doi.org/10.1016/S0014-5793(01)02421-8

    Article  CAS  PubMed  Google Scholar 

  23. Wang JZ, Grundke-Iqbal I, Iqbal K (1996) Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer's disease. Nat Med 2(8):871–875. https://doi.org/10.1038/nm0896-871

    Article  CAS  PubMed  Google Scholar 

  24. Liu F, Zaidi T, Iqbal K, Grundke-Iqbal I, Merkle RK, Gong CX (2002) Role of glycosylation in hyperphosphorylation of tau in Alzheimer's disease. FEBS Lett 512(1–3):101–106. https://doi.org/10.1016/s0014-5793(02)02228-7

    Article  CAS  PubMed  Google Scholar 

  25. Schwarz F, Aebi M (2011) Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol 21(5):576–582. https://doi.org/10.1016/j.sbi.2011.08.005

    Article  CAS  PubMed  Google Scholar 

  26. Aebi M (2013) N-linked protein glycosylation in the ER. Biochim Biophys Acta 1833(11):2430–2437. https://doi.org/10.1016/j.bbamcr.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  27. O'Connor SE, Imperiali B (1996) Modulation of protein structure and function by asparagine-linked glycosylation. Chem Biol 3(10):803–812. https://doi.org/10.1016/S1074-5521(96)90064-2

    Article  CAS  PubMed  Google Scholar 

  28. Mitra N, Sinha S, Ramya TN, Surolia A (2006) N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem Sci 31(3):156–163. https://doi.org/10.1016/j.tibs.2006.01.003

    Article  CAS  PubMed  Google Scholar 

  29. Jayaprakash NG, Surolia A (2017) Role of glycosylation in nucleating protein folding and stability. Biochem J 474(14):2333–2347. https://doi.org/10.1042/BCJ20170111

    Article  CAS  PubMed  Google Scholar 

  30. Liu F, Zaidi T, Iqbal K, Grundke-Iqbal I, Gong CX (2002) Aberrant glycosylation modulates phosphorylation of tau by protein kinase A and dephosphorylation of tau by protein phosphatase 2A and 5. Neuroscience 115(3):829–837. https://doi.org/10.1016/S0306-4522(02)00510-9

    Article  CAS  PubMed  Google Scholar 

  31. Biernat J, Mandelkow EM, Schroter C, Lichtenberg-Kraag B, Steiner B, Berling B, Meyer H, Mercken M, Vandermeeren A, Goedert M, Mandelkow E (1992) The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule binding region. EMBO J 11(4):1593–1597. https://doi.org/10.1002/j.1460-2075.1992.tb05204.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Losev Y, Paul A, Frenkel-Pinter M, Abu-Hussein M, Khalaila I, Gazit E, Segal D (2019) Novel model of secreted human tau protein reveals the impact of the abnormal N-glycosylation of tau on its aggregation propensity. Sci Rep 9(1):1–10. https://doi.org/10.1038/s41598-019-39218-x

    Article  CAS  Google Scholar 

  33. Bateman JR, Lee AM, Wu CT (2006) Site-specific transformation of Drosophila via phiC31 integrase-mediated cassette exchange. Genetics 173(2):769–777. https://doi.org/10.1534/genetics.106.056945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frenkel-Pinter M, Stempler S, Tal-Mazaki S, Losev Y, Singh-Anand A, Escobar-Alvarez D, Lezmy J, Gazit E, Ruppin E, Segal D (2017) Altered protein glycosylation predicts Alzheimer's disease and modulates its pathology in disease model Drosophila. Neurobiol Aging 56:159–171. https://doi.org/10.1016/j.neurobiolaging.2017.04.020

    Article  CAS  PubMed  Google Scholar 

  35. Kuster B, Wheeler SF, Hunter AP, Dwek RA, Harvey DJ (1997) Sequencing of N-linked oligosaccharides directly from protein gels: iN-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography. Anal Biochem 250(1):82–101. https://doi.org/10.1006/abio.1997.2199

    Article  CAS  PubMed  Google Scholar 

  36. Hanger DP, Noble W (2011) Functional implications of glycogen synthase kinase-3-mediated tau phosphorylation. Int J Alzheimer's disease 2011:352805. https://doi.org/10.4061/2011/52805

    Article  Google Scholar 

  37. Rankin CA, Sun Q, Gamblin TC (2007) Tau phosphorylation by GSK-3beta promotes tangle-like filament morphology. Mol Neurodegen 2:12. https://doi.org/10.1186/1750-1326-2-12

    Article  CAS  Google Scholar 

  38. Jackson GR (2008) Guide to understanding Drosophila models of neurodegenerative diseases. PLoS Biol 6(2):0236–0239. https://doi.org/10.1371/journal.pbio.0060053

    Article  CAS  Google Scholar 

  39. Arai H, Morikawa Y, Higuchi M, Matsui T, Clark CM, Miura M, Machida N, Lee VM, Trojanowski JQ, Sasaki H (1997) Cerebrospinal fluid tau levels in neurodegenerative diseases with distinct tau-related pathology. Biochem Biophys Res Commun 236(2):262–264. https://doi.org/10.1006/bbrc.1997.6908

    Article  CAS  PubMed  Google Scholar 

  40. Degerman Gunnarsson M, Lannfelt L, Ingelsson M, Basun H, Kilander L (2014) High tau levels in cerebrospinal fluid predict rapid decline and increased dementia mortality in Alzheimer's disease. Dement Geriatr Cogn Disord 37(3–4):196–206. https://doi.org/10.1159/000355556

    Article  CAS  PubMed  Google Scholar 

  41. Zetterberg H, Wilson D, Andreasson U, Minthon L, Blennow K, Randall J, Hansson O (2013) Plasma tau levels in Alzheimer's disease. Alzheimers Res Ther 5(2):9. https://doi.org/10.1186/alzrt163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Passarella D, Goedert M (2018) Beta-sheet assembly of Tau and neurodegeneration in Drosophila melanogaster. Neurobiol Aging 72:98–105. https://doi.org/10.1016/j.neurobiolaging.2018.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Trotter MB, Stephens TD, McGrath JP, Steinhilb ML (2017) The Drosophila model system to study tau action. Methods Cell Biol 141:259–286. https://doi.org/10.1016/bs.mcb.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  44. Ali YO, Escala W, Ruan K, Zhai RG (2011) Assaying locomotor, learning, and memory deficits in Drosophila models of neurodegeneration. J Vis Exp 49:2504. https://doi.org/10.3791/2504

    Article  Google Scholar 

  45. Ali YO, Ruan K, Zhai RG (2012) NMNAT suppresses tau-induced neurodegeneration by promoting clearance of hyperphosphorylated tau oligomers in a Drosophila model of tauopathy. Hum Mol Genet 21(2):237–250. https://doi.org/10.1093/hmg/ddr449

    Article  CAS  PubMed  Google Scholar 

  46. Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M, Feany MB (2001) Tauopathy in drosophila: neurodegeneration without neurofibrillary tangles. Science 293(5530):711–714. https://doi.org/10.1126/science.1062382

    Article  CAS  PubMed  Google Scholar 

  47. Zeng X, Andrade CA, Oliveira MD, Sun XL (2012) Carbohydrate-protein interactions and their biosensing applications. Anal Bioanal Chem 402(10):3161–3176. https://doi.org/10.1007/s00216-011-5594-y

    Article  CAS  PubMed  Google Scholar 

  48. del Carmen F-A, Diaz D, Berbis MA, Marcelo F, Canada J, Jimenez-Barbero J (2012) ProteiN-carbohydrate interactions studied by NMR: from molecular recognition to drug design. Curr Protein Pept Sci 13(8):816–830. https://doi.org/10.2174/1389203711213080010

    Article  Google Scholar 

  49. Caramelo JJ, Parodi AJ (2015) A sweet code for glycoprotein folding. FEBS Lett 589(22):3379–3387. https://doi.org/10.1016/j.febslet.2015.07.021

    Article  CAS  PubMed  Google Scholar 

  50. Hoiberg-Nielsen R, Fuglsang CC, Arleth L, Westh P (2006) Interrelationships of glycosylation and aggregation kinetics for Peniophora lycii phytase. Biochemistry 45(15):5057–5066. https://doi.org/10.1021/bi0522955

    Article  CAS  PubMed  Google Scholar 

  51. Freeze HH, Kinoshita T, Varki A (2015) Glycans in Acquired Human Diseases. In: Varki A, Cummings RD, Esko JD et al. (eds) Essentials of Glycobiology. Cold Spring Harbor (NY), pp 583–595. https://doi.org/10.1101/glycobiology.3e.046

  52. Frenkel-Pinter M, Shmueli MD, Raz C, Yanku M, Zilberzwige S, Gazit E (2017) Interplay between protein glycosylation pathways in Alzheimer's disease. Sci Adv 3(9):1–10. https://doi.org/10.1126/sciadv.1601576

    Article  CAS  Google Scholar 

  53. Butterfield DA, Owen JB (2011) Lectin-affinity chromatography brain glycoproteomics and Alzheimer disease: insights into protein alterations consistent with the pathology and progression of this dementing disorder. Proteom Clin Appl 5(1–2):50–56. https://doi.org/10.1002/prca.201000070

    Article  CAS  Google Scholar 

  54. Chen Z, Zhong C (2013) Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 108:21–43. https://doi.org/10.1016/j.pneurobio.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  55. Yazaki M, Tagawa K, Maruyama K, Sorimachi H, Tsuchiya T, Ishiura S, Suzuki K (1996) Mutation of potential N-linked glycosylation sites in the Alzheimer's disease amyloid precursor protein (APP). Neurosci Lett 221(1):57–60. https://doi.org/10.1016/s0304-3940(96)13285-7

    Article  CAS  PubMed  Google Scholar 

  56. Vanoni O, Paganetti P, Molinari M (2008) Consequences of individual N-glycan deletions and of proteasomal inhibition on secretion of active BACE. Mol Biol Cell 19(10):4086–4098. https://doi.org/10.1091/mbc.E08-05-0459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Price JL, Culyba EK, Chen W, Murray AN, Hanson SR, Wong CH, Powers ET, Kelly JW (2012) N-glycosylation of enhanced aromatic sequons to increase glycoprotein stability. Biopolymers 98(3):195–211. https://doi.org/10.1002/bip.22030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu Y, Bartido S, Setaluri V, Qin J, Yang G, Houghton AN (2001) Diverse roles of conserved asparagine-linked glycan sites on tyrosinase family glycoproteins. Exp Cell Res 267(1):115–125. https://doi.org/10.1006/excr.2001.5232

    Article  CAS  PubMed  Google Scholar 

  59. Moharir A, Peck SH, Budden T, Lee SY (2013) The role of N-glycosylation in folding, trafficking, and functionality of lysosomal protein CLN5. PLoS ONE 8(9):1–9. https://doi.org/10.1371/journal.pone.0074299

    Article  CAS  Google Scholar 

  60. Schedin-Weiss S, Winblad B, Tjernberg LO (2014) The role of protein glycosylation in Alzheimer disease. FEBS J 281(1):46–62. https://doi.org/10.1111/febs.12590

    Article  CAS  PubMed  Google Scholar 

  61. Drewes G, Ebneth A, Mandelkow EM (1998) MAPs, MARKs and microtubule dynamics. Trends Biochem Sci 23(8):307–311. https://doi.org/10.1016/S0968-0004(98)01245-6

    Article  CAS  PubMed  Google Scholar 

  62. Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, Crowther RA, Ghetti B, Goedert M, Scheres SHW (2017) Cryo-EM structures of tau filaments from Alzheimer's disease. Nature 547(7662):185–190. https://doi.org/10.1038/nature23002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cook C, Carlomagno Y, Gendron TF, Dunmore J, Scheffel K, Stetler C, Davis M, Dickson D, Jarpe M, DeTure M, Petrucelli L (2014) Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance. Hum Mol Genet 23(1):104–116. https://doi.org/10.1093/hmg/ddt402

    Article  CAS  PubMed  Google Scholar 

  64. Kouri N, Carlomagno Y, Baker M, Liesinger AM, Caselli RJ, Wszolek ZK, Petrucelli L, Boeve BF, Parisi JE, Josephs KA, Uitti RJ, Ross OA, Graff-Radford NR, DeTure MA, Dickson DW, Rademakers R (2014) Novel mutation in MAPT exon 13 (pN410H) causes corticobasal degeneration. Acta Neuropathol 127(2):271–282. https://doi.org/10.1007/s00401-013-1193-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rust HL, Thompson PR (2011) Kinase consensus sequences: a breeding ground for crosstalk. ACS Chem Biol 6(9):881–892. https://doi.org/10.1021/cb200171d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Miller CJ, Turk BE (2016) Rapid identification of protein kinase phosphorylation site motifs using combinatorial peptide libraries. Methods Mol Biol 1360:203–216. https://doi.org/10.1007/978-1-4939-3073-9_15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139(3):468–484. https://doi.org/10.1016/j.cell.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  68. Vanhelmont T, Vandebroek T, De Vos A, Terwel D, Lemaire K, Anandhakumar J, Franssens V, Swinnen E, Van Leuven F, Winderickx J (2010) Serine-409 phosphorylation and oxidative damage define aggregation of human protein tau in yeast. FEMS Yeast Res 10(8):992–1005. https://doi.org/10.1111/j.1567-1364.2010.00662.x

    Article  CAS  PubMed  Google Scholar 

  69. De Vos A, Anandhakumar J, Van den Brande J, Verduyckt M, Franssens V, Winderickx J, Swinnen E (2011) Yeast as a model system to study tau biology. Int J Alzheimer's Dis 2011:428970. https://doi.org/10.4061/2011/428970

    Article  CAS  Google Scholar 

  70. Kimura T, Ono T, Takamatsu J, Yamamoto H, Ikegami K, Kondo A, Hasegawa M, Ihara Y, Miyamoto E, Miyakawa T (1996) Sequential changes of tau-site-specific phosphorylation during development of paired helical filaments. Dementia 7(4):177–181. https://doi.org/10.1159/000106875

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. Eckhard Mandelkow (DZNE, Bonn, Germany) for help with plasmid vectors and Dr. Alex Barbul for assistance with confocal microscopy. Authors are grateful to the members of the E.G. and D.S. research groups for discussion. G.K.V thanks TATA trusts for the post-doctoral scholarship.

Funding

This work was supported in part by the Israel Science Foundation, the Helmholtz Israel Program, the Alliance Family Foundation, and the RoseTrees Trust (to D.S.).

Author information

Authors and Affiliations

Authors

Contributions

YL, MF and DS planned and designed the experiments with inputs from EG. YL, MF, MAH, GKV, DER and RG carried out the experiments. IK performed LC–MS analysis. YL and GKV prepared the figures, analyzed the results and wrote the manuscript with DS. All authors read and approved the manuscript.

Corresponding author

Correspondence to Daniel Segal.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Losev, Y., Frenkel-Pinter, M., Abu-Hussien, M. et al. Differential effects of putative N-glycosylation sites in human Tau on Alzheimer’s disease-related neurodegeneration. Cell. Mol. Life Sci. 78, 2231–2245 (2021). https://doi.org/10.1007/s00018-020-03643-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03643-3

Keywords

Navigation