Skip to main content

Advertisement

Log in

Targeting Hsp70 facilitated protein quality control for treatment of polyglutamine diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The polyglutamine (polyQ) diseases are a group of nine fatal, adult-onset neurodegenerative disorders characterized by the misfolding and aggregation of mutant proteins containing toxic expansions of CAG/polyQ tracts. The heat shock protein 90 and 70 (Hsp90/Hsp70) chaperone machinery is a key component of cellular protein quality control, playing a role in the regulation of folding, aggregation, and degradation of polyQ proteins. The ability of Hsp70 to facilitate disaggregation and degradation of misfolded proteins makes it an attractive therapeutic target in polyQ diseases. Genetic studies have demonstrated that manipulation of Hsp70 and related co-chaperones can enhance the disaggregation and/or degradation of misfolded proteins in models of polyQ disease. Therefore, the development of small molecules that enhance Hsp70 activity is of great interest. However, it is still unclear if currently available Hsp70 modulators can selectively enhance disaggregation or degradation of misfolded proteins without perturbing other Hsp70 functions essential for cellular homeostasis. This review discusses the multifaceted role of Hsp70 in protein quality control and the opportunities and challenges Hsp70 poses as a potential therapeutic target in polyQ disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AC:

Azure C

AR:

Androgen receptor

ATXN:

Ataxin

BAG:

Bcl-2 associated athanogene

CASA:

Chaperone-assisted selective autophagy

CHIP:

C-terminus of Hsp70 interacting protein

CMA:

Chaperone-mediated autophagy

dHMNII:

Distal hereditary motor neuropathy type II

DRPLA:

Dentatorubral pallidoluysian atrophy

eMI:

Endosomal microautophagy

GR:

Glucocorticoid receptor

HD:

Huntington’s disease

HIP:

Hsp70 interacting protein

HOP:

Hsp organizing protein

HSF1:

Heat shock factor 1

Hsp:

Heat shock protein

Hsp70:

Heat shock protein 70

Hsp90:

Heat chock protein 90

HspBP1:

Hsp70-binding protein 1

HSR:

Heat shock response

Htt:

Huntingtin

LAMP2A:

Lysosome associated membrane protein type 2A

LGMD1:

Limb-girdle muscular dystrophy type 1

MB:

Methylene blue

MTOC:

Microtubule organization center

NBD:

Nucleotide binding domain

NEF:

Nucleotide exchange factor

polyQ:

Polyglutamine

PR:

Progesterone receptor

SBD:

Substrate binding domain

SBMA:

Spinal bulbar muscular atrophy

SCA:

Spinocerebellar ataxia

sHsp:

Small heat shock protein

TFEB:

Transcriptional factor EB

TPR:

Tetratricopeptide repeat

UBQLN2:

Ubiquilin-2

UPS:

Ubiquitin proteasome system

References

  1. Lieberman AP, Shakkottai VG, Albin RL (2019) Polyglutamine repeats in neurodegenerative diseases. Annu Rev Pathol 14:1–27. https://doi.org/10.1146/annurev-pathmechdis

    Article  CAS  PubMed  Google Scholar 

  2. Adegbuyiro A, Sedighi F, Pilkington AW, Groover S, Legleiter J, Legleiter J (2017) Proteins containing expanded polyglutamine tracts and neurodegenerative disease. Biochemistry 56:1199–1217. https://doi.org/10.1021/acs.biochem.6b00936

    Article  CAS  PubMed  Google Scholar 

  3. Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R, Hasenbank R, Bates GP, Lehrach H, Wanker EE (1999) Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc Natl Acad Sci USA 96:4604–4609. https://doi.org/10.1073/PNAS.96.8.4604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M, Ross CA, Scahill RI, Wetzel R, Wild EJ, Tabrizi SJ (2015) Huntington disease. Nat Rev Dis Prim 1:15005. https://doi.org/10.1038/nrdp.2015.5

    Article  PubMed  Google Scholar 

  5. Croce KR, Yamamoto A (2019) A role for autophagy in Huntington’s disease. Neurobiol Dis 122:16–22. https://doi.org/10.1016/j.nbd.2018.08.010

    Article  CAS  PubMed  Google Scholar 

  6. Lieberman AP (2018) Spinal and bulbar muscular atrophy. Handb Clin Neurol 2018:625–632. https://doi.org/10.1016/B978-0-444-64076-5.00040-5

    Article  Google Scholar 

  7. Buijsen RAM, Toonen LJA, Gardiner SL, van Roon-Mom WMC (2019) Genetics, mechanisms, and therapeutic progress in polyglutamine spinocerebellar ataxias. Neurotherapeutics. https://doi.org/10.1007/s13311-018-00696-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. Paulson HL, Shakkottai VG, Clark HB, Orr HT (2017) Polyglutamine spinocerebellar ataxias—from genes to potential treatments. Nat Rev Neurosci 18:613–626. https://doi.org/10.1038/nrn.2017.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Esteves S, Duarte-Silva S, Maciel P (2017) Discovery of of therapeutic approaches for polyglutamine diseases: a summary of recent efforts. Med Res Rev 37:860–906. https://doi.org/10.1002/med.21425

    Article  PubMed  Google Scholar 

  10. Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP (2015) Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol 55:353–371. https://doi.org/10.1146/annurev-pharmtox-010814-124332

    Article  CAS  PubMed  Google Scholar 

  11. Reis SD, Pinho BR, Oliveira JMA (2017) Modulation of molecular chaperones in Huntington’s disease and other polyglutamine disorders. Mol Neurobiol 54:5829–5854. https://doi.org/10.1007/s12035-016-0120-z

    Article  CAS  PubMed  Google Scholar 

  12. Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18:571–573. https://doi.org/10.1007/BF02172188

    Article  CAS  Google Scholar 

  13. Tissiéres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84:389–398. https://doi.org/10.1016/0022-2836(74)90447-1

    Article  PubMed  Google Scholar 

  14. Jee H (2016) Size dependent classification of heat shock proteins: a mini-review. J Exerc Rehabil 12:255–259. https://doi.org/10.12965/jer.1632642.321

    Article  PubMed  PubMed Central  Google Scholar 

  15. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266. https://doi.org/10.1016/j.molcel.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  16. Gomez-Pastor R, Burchfiel ET, Thiele DJ (2018) Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol 19:4–19. https://doi.org/10.1038/nrm.2017.73

    Article  CAS  PubMed  Google Scholar 

  17. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111. https://doi.org/10.1007/s12192-008-0068-7

    Article  CAS  PubMed  Google Scholar 

  18. Rudiger S, Buchberger A, Bukau B (1997) Interaction of Hsp70 chaperones with substrates. Nat Struct Biol 4:342–349. https://doi.org/10.1038/nsb0597-342

    Article  CAS  PubMed  Google Scholar 

  19. Zuiderweg ER, Hightower LE, Gestwicki JE (2017) The remarkable multivalency of the Hsp70 chaperones. Cell Stress Chaperones 22:173–189. https://doi.org/10.1007/s12192-017-0776-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brehmer D, Rüdiger S, Gässler CS, Klostermeier D, Packschies L, Reinstein J, Mayer MP, Bukau B (2001) Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat Struct Biol 8:427–432. https://doi.org/10.1038/87588

    Article  CAS  PubMed  Google Scholar 

  21. Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592. https://doi.org/10.1038/nrm2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bracher A, Verghese J (2015) The nucleotide exchange factors of Hsp70 molecular chaperones. Front Mol Biosci 2:10. https://doi.org/10.3389/fmolb.2015.00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li Z, Hartl FU, Bracher A (2013) Structure and function of Hip, an attenuator of the Hsp70 chaperone cycle. Nat Struct Mol Biol 20:929–935. https://doi.org/10.1038/nsmb.2608

    Article  CAS  PubMed  Google Scholar 

  24. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230. https://doi.org/10.1126/science.181.4096.223

    Article  CAS  PubMed  Google Scholar 

  25. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579. https://doi.org/10.1038/381571a0

    Article  CAS  PubMed  Google Scholar 

  26. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581. https://doi.org/10.1038/nsmb.1591

    Article  CAS  PubMed  Google Scholar 

  27. Willmund F, del Alamo M, Pechmann S, Chen T, Albanèse V, Dammer EB, Peng J, Frydman J (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152:196–209. https://doi.org/10.1016/J.CELL.2012.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nunes JM, Mayer-Hartl M, Hartl FU, Müller DJ (2015) Action of the Hsp70 chaperone system observed with single proteins. Nat Commun 6:6307. https://doi.org/10.1038/ncomms7307

    Article  CAS  PubMed  Google Scholar 

  29. Sharma SK, De Los Rios P, Christen P, Lustig A, Goloubinoff P (2010) The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nat Chem Biol 6:914–920. https://doi.org/10.1038/nchembio.455

    Article  CAS  PubMed  Google Scholar 

  30. Balchin D, Hayer-Hartl M, Hartl F (2016) In vivo aspects of protein folding and quality control. Science 353:aac4354. https://doi.org/10.1126/science.aac4354

    Article  CAS  PubMed  Google Scholar 

  31. Sekhar A, Rosenzweig R, Bouvignies G, Kay LE (2016) Hsp70 biases the folding pathways of client proteins. Proc Natl Acad Sci USA 113:E2794–E2801. https://doi.org/10.1073/PNAS.1601846113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu B, Han Y, Qian S-B (2013) Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. Mol Cell 49:453–463. https://doi.org/10.1016/j.molcel.2012.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111–133. https://doi.org/10.1177/153537020322800201

    Article  CAS  Google Scholar 

  34. Pratt WB, Morishima Y, Peng H-M, Osawa Y (2010) Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage. Exp Biol Med (Maywood) 235:278–289. https://doi.org/10.1258/ebm.2009.009250

    Article  CAS  Google Scholar 

  35. Pratt WB, Morishima Y, Murphy M, Harrell M (2006) Chaperoning of glucocorticoid receptors. In: Gaestel M (ed) Molecular chaperones in health and disease. Springer, Heidelberg, pp 111–138

    Chapter  Google Scholar 

  36. Kanelakis KC, Shewach DS, Pratt WB (2002) Nucleotide binding states of hsp70 and hsp90 during sequential steps in the process of glucocorticoid receptor.hsp90 heterocomplex assembly. J Biol Chem 277:33698–33703. https://doi.org/10.1074/jbc.M204164200

    Article  CAS  PubMed  Google Scholar 

  37. Hutchison KA, Dittmar KD, Czar MJ, Pratt WB (1994) Proof that hsp70 is required for assembly of the glucocorticoid receptor into a heterocomplex with hsp90. J Biol Chem 269:5043–5049

    CAS  PubMed  Google Scholar 

  38. Morishima Y, Murphy PJ, Li DP, Sanchez ER, Pratt WB (2000) Stepwise assembly of a glucocorticoid receptor.hsp90 heterocomplex resolves two sequential ATP-dependent events involving first hsp70 and then hsp90 in opening of the steroid binding pocket. J Biol Chem 275:18054–18060. https://doi.org/10.1074/jbc.M000434200

    Article  CAS  PubMed  Google Scholar 

  39. Brinker A, Scheufler C, Von Der Mulbe F, Fleckenstein B, Herrmann C, Jung G, Moarefi I, Hartl FU (2002) Ligand discrimination by TPR domains. Relevance and selectivity of EEVD-recognition in Hsp70-Hop-Hsp90 complexes. J Biol Chem 277:19265–19275. https://doi.org/10.1074/jbc.M109002200

    Article  CAS  PubMed  Google Scholar 

  40. Chen S, Prapapanich V, Rimerman RA, Honoré B, Smith DF (1996) Interactions of p60, a mediator of progesterone receptor assembly, with heat shock proteins hsp90 and hsp70. Mol Endocrinol 10:682–693. https://doi.org/10.1210/mend.10.6.8776728

    Article  CAS  PubMed  Google Scholar 

  41. Dittmar KD, Demady DR, Stancato LF, Krishna P, Pratt WB (1997) Folding of the glucocorticoid receptor by the heat shock protein (hsp) 90-based chaperone machinery. The role of p23 is to stabilize receptor.hsp90 heterocomplexes formed by hsp90-p60-hsp70. J Biol Chem 272:21213–21220. https://doi.org/10.1074/JBC.272.34.21213

    Article  CAS  PubMed  Google Scholar 

  42. Cintron NS, Toft D (2006) Defining the requirements for Hsp40 and Hsp70 in the Hsp90 chaperone pathway. J Biol Chem 281:26235–26244. https://doi.org/10.1074/jbc.M605417200

    Article  CAS  PubMed  Google Scholar 

  43. Wang AM, Morishima Y, Clapp KM, Peng H-M, Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP (2010) Inhibition of hsp70 by methylene blue affects signaling protein function and ubiquitination and modulates polyglutamine protein degradation. J Biol Chem 285:15714–15723. https://doi.org/10.1074/jbc.M109.098806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pratt WB, Galigniana MD, Harrell JM, DeFranco DB (2004) Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 16:857–872. https://doi.org/10.1016/J.CELLSIG.2004.02.004

    Article  CAS  PubMed  Google Scholar 

  45. Eftekharzadeh B, Banduseela VC, Chiesa G, Martínez-Cristóbal P, Rauch JN, Nath SR, Schwarz DMC, Shao H, Marin-Argany M, Di Sanza C, Giorgetti E, Yu Z, Pieratelli R, Felli IC, Brun-Heath I, García J, Nebreda ÁR, Gestwicki JE, Lieberman AP, Salvatella X (2019) Hsp70 and Hsp40 inhibit an inter-domain interaction necessary for transcriptional activity in the androgen receptor. Nat Commun 10:3562. https://doi.org/10.1038/s41467-019-11594-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thomas M, Harrell JM, Morishima Y, Peng H-M, Pratt WB, Lieberman AP (2006) Pharmacologic and genetic inhibition of hsp90-dependent trafficking reduces aggregation and promotes degradation of the expanded glutamine androgen receptor without stress protein induction. Hum Mol Genet 15:1876–1883. https://doi.org/10.1093/hmg/ddl110

    Article  CAS  PubMed  Google Scholar 

  47. Pratt WB, Morishima Y, Gestwicki JE, Lieberman AP, Osawa Y (2014) A model in which heat shock protein 90 targets protein-folding clefts: rationale for a new approach to neuroprotective treatment of protein folding diseases. Exp Biol Med (Maywood) 239:1405–1413. https://doi.org/10.1177/1535370214539444

    Article  CAS  Google Scholar 

  48. Wu SJ, Liu FH, Hu SM, Wang C (2001) Different combinations of the heat-shock cognate protein 70 (hsc70) C-terminal functional groups are utilized to interact with distinct tetratricopeptide repeat-containing proteins. Biochem J 359:419–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiang J, Ballinger CA, Wu Y, Dai Q, Cyr DM, Höhfeld J, Patterson C (2001) CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem 276:42938–42944. https://doi.org/10.1074/jbc.M101968200

    Article  CAS  PubMed  Google Scholar 

  50. Edkins AL (2015) CHIP: a co-chaperone for degradation by the proteasome. Subcell Biochem 78:219–242. https://doi.org/10.1007/978-3-319-11731-7_11

    Article  CAS  PubMed  Google Scholar 

  51. Westhoff B, Chapple JP, van der Spuy J, Höhfeld J, Cheetham ME (2005) HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Curr Biol 15:1058–1064. https://doi.org/10.1016/J.CUB.2005.04.058

    Article  CAS  PubMed  Google Scholar 

  52. Howarth JL, Kelly S, Keasey MP, Glover C, Lee Y-B, Mitrophanous K, Chapple JP, Gallo JM, Cheetham ME, Uney JB (2007) Hsp40 molecules that target to the ubiquitin-proteasome system decrease inclusion formation in models of polyglutamine disease. Mol Ther 15:1100–1105. https://doi.org/10.1038/sj.mt.6300163

    Article  CAS  PubMed  Google Scholar 

  53. Fernández-Fernández MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM (2017) Hsp70—a master regulator in protein degradation. FEBS Lett 591:2648–2660. https://doi.org/10.1002/1873-3468.12751

    Article  CAS  PubMed  Google Scholar 

  54. Rujano MAA, Kampinga HHH, Salomons FAA (2007) Modulation of polyglutamine inclusion formation by the Hsp70 chaperone machine. Exp Cell Res 313:3568–3578

    Article  CAS  PubMed  Google Scholar 

  55. Levine B, Klionsky DJ (2017) Autophagy wins the 2016 Nobel Prize in Physiology or Medicine: breakthroughs in baker’s yeast fuel advances in biomedical research. Proc Natl Acad Sci USA 114:201–205. https://doi.org/10.1073/pnas.1619876114

    Article  CAS  PubMed  Google Scholar 

  56. Marzella L, Ahlberg J, Glaumann H (1981) Autophagy, heterophagy, microautophagy and crinophagy as the means for intracellular degradation. Virchows Arch B Cell Pathol 36:219–234. https://doi.org/10.1007/BF02912068

    Article  CAS  Google Scholar 

  57. Kaushik S, Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19:365–381. https://doi.org/10.1038/s41580-018-0001-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107–1117. https://doi.org/10.1093/hmg/11.9.1107

    Article  CAS  PubMed  Google Scholar 

  59. Labbadia J, Morimoto RI (2013) Huntington’s disease: underlying molecular mechanisms and emerging concepts. Trends Biochem Sci 38:378–385. https://doi.org/10.1016/j.tibs.2013.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fred Dice J (1990) Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 15:305–309. https://doi.org/10.1016/0968-0004(90)90019-8

    Article  Google Scholar 

  61. Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101:199–210. https://doi.org/10.1016/S0092-8674(00)80830-2

    Article  CAS  PubMed  Google Scholar 

  62. Tekirdag K, Cuervo AM (2018) Chaperone-mediated autophagy and endosomal microautophagy: joint by a chaperone. J Biol Chem 293:5414–5424. https://doi.org/10.1074/jbc.R117.818237

    Article  CAS  PubMed  Google Scholar 

  63. Cuervo AM, Dice JF (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273:501–503

    Article  CAS  PubMed  Google Scholar 

  64. Salvador N, Aguado C, Horst M, Knecht E (2000) Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 275:27447–27456. https://doi.org/10.1074/jbc.M001394200

    Article  CAS  PubMed  Google Scholar 

  65. Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM (2008) The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol 28:5747–5763. https://doi.org/10.1128/MCB.02070-07

    Article  PubMed  PubMed Central  Google Scholar 

  66. Koga H, Cuervo AM (2011) Chaperone-mediated autophagy dysfunction in the pathogenesis of neurodegeneration. Neurobiol Dis 43:29–37. https://doi.org/10.1016/J.NBD.2010.07.006

    Article  CAS  PubMed  Google Scholar 

  67. Koga H, Martinez-Vicente M, Arias E, Kaushik S, Sulzer D, Cuervo AM (2011) Constitutive upregulation of chaperone-mediated autophagy in Huntington’s disease. J Neurosci 31:18492–18505. https://doi.org/10.1523/JNEUROSCI.3219-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Duncan C, Papanikolaou T, Ellerby LM (2010) Autophagy: polyQ toxic fragment turnover. Autophagy 6:312–314. https://doi.org/10.4161/auto.6.2.11139

    Article  CAS  PubMed  Google Scholar 

  69. Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A, Potolicchio I, Nieves E, Cuervo AM, Santambrogio L (2011) Microautophagy of cytosolic proteins by late endosomes. Dev Cell 20:131–139. https://doi.org/10.1016/J.DEVCEL.2010.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Morozova K, Clement CC, Kaushik S, Stiller B, Arias E, Ahmad A, Rauch JN, Chatterjee V, Melis C, Scharf B, Gestwicki JE, Cuervo A-M, Zuiderweg ER, Santambrogio L (2016) Structural and biological interaction of hsc-70 protein with phosphatidylserine in endosomal microautophagy. J Biol Chem 291:18096–18106. https://doi.org/10.1074/jbc.M116.736744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Crippa V, Sau D, Rusmini P, Boncoraglio A, Onesto E, Bolzoni E, Galbiati M, Fontana E, Marino M, Carra S, Bendotti C, De Biasi S, Poletti A (2010) The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum Mol Genet 19:3440–3456. https://doi.org/10.1093/hmg/ddq257

    Article  CAS  PubMed  Google Scholar 

  72. Crippa V, Carra S, Rusmini P, Sau D, Bolzoni E, Bendotti C, De Biasi S, Poletti A (2010) A role of small heat shock protein B8 (HspB8) in the autophagic removal of misfolded proteins responsible for neurodegenerative diseases. Autophagy 6:958–960. https://doi.org/10.4161/auto.6.7.13042

    Article  PubMed  Google Scholar 

  73. Rauch JN, Tse E, Freilich R, Mok S-A, Makley LN, Southworth DR, Gestwicki JE (2017) BAG3 is a modular, scaffolding protein that physically links heat shock protein 70 (Hsp70) to the small heat shock proteins. J Mol Biol 429:128–141. https://doi.org/10.1016/J.JMB.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  74. Stürner E, Behl C (2017) The role of the multifunctional BAG3 protein in cellular protein quality control and in disease. Front Mol Neurosci 10:177. https://doi.org/10.3389/fnmol.2017.00177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rusmini P, Crippa V, Giorgetti E, Boncoraglio A, Cristofani R, Carra S, Poletti A (2013) Clearance of the mutant androgen receptor in motoneuronal models of spinal and bulbar muscular atrophy. Neurobiol Aging 34:2585–2603. https://doi.org/10.1016/j.neurobiolaging.2013.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nillegoda NB, Wentink AS, Bukau B (2018) Protein disaggregation in multicellular organisms. Trends Biochem Sci 43:285–300. https://doi.org/10.1016/j.tibs.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  77. Kuo Y, Ren S, Lao U, Edgar BA, Wang T (2013) Suppression of polyglutamine protein toxicity by co-expression of a heat-shock protein 40 and a heat-shock protein 110. Cell Death Dis 4:e833–e833. https://doi.org/10.1038/cddis.2013.351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nillegoda NB, Bukau B (2015) Metazoan Hsp70-based protein disaggregases: emergence and mechanisms. Front Mol Biosci 2:57. https://doi.org/10.3389/fmolb.2015.00057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nillegoda NB, Stank A, Malinverni D, Alberts N, Szlachcic A, Barducci A, De Los Rios P, Wade RC, Bukau B (2017) Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes. Elife 6:e24560. https://doi.org/10.7554/eLife.24560

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gao X, Carroni M, Nussbaum-Krammer C, Mogk A, Nillegoda N, Szlachcic A, Guilbride D, Saibil H, Mayer M, Bukau B (2015) Human Hsp70 disaggregase reverses Parkinson’s-linked α-synuclein amyloid fibrils. Mol Cell 59:781–793. https://doi.org/10.1016/J.MOLCEL.2015.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rampelt H, Kirstein-Miles J, Nillegoda NB, Chi K, Scholz SR, Morimoto RI, Bukau B (2012) Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J 31:4221–4235. https://doi.org/10.1038/emboj.2012.264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Deng H-X, Chen W, Hong S-T, Boycott KM, Gorrie GH, Siddique N, Yang Y, Fecto F, Shi Y, Zhai H, Jiang H, Hirano M, Rampersaud E, Jansen GH, Donkervoort S, Bigio EH, Brooks BR, Ajroud K, Sufit RL, Haines JL, Mugnaini E, Pericak-Vance MA, Siddique T (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–215. https://doi.org/10.1038/nature10353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hjerpe R, Bett JS, Keuss MJ, Solovyova A, McWilliams TG, Johnson C, Sahu I, Varghese J, Wood N, Wightman M, Osborne G, Bates GP, Glickman MH, Trost M, Knebel A, Marchesi F, Kurz T (2016) UBQLN2 mediates autophagy-independent protein aggregate clearance by the proteasome. Cell 166:935–949. https://doi.org/10.1016/j.cell.2016.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hageman J, Rujano MA, van Waarde MA, Kakkar V, Dirks RP, Govorukhina N, Oosterveld-Hut HM, Lubsen NH, Kampinga HH (2010) A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol Cell 37:355–369. https://doi.org/10.1016/J.MOLCEL.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  85. Månsson C, Kakkar V, Monsellier E, Sourigues Y, Härmark J, Kampinga HH, Melki R, Emanuelsson C (2014) DNAJB6 is a peptide-binding chaperone which can suppress amyloid fibrillation of polyglutamine peptides at substoichiometric molar ratios. Cell Stress Chaperones 19:227–239. https://doi.org/10.1007/s12192-013-0448-5

    Article  CAS  PubMed  Google Scholar 

  86. Jia B, Wu Y, Zhou Y (2014) 14-3-3 and aggresome formation: implications in neurodegenerative diseases. Prion 8:173–177. https://doi.org/10.4161/PRI.28123

    Article  CAS  PubMed Central  Google Scholar 

  87. Nath SR, Lieberman AP (2017) The ubiquitination, disaggregation and proteasomal degradation machineries in polyglutamine disease. Front Mol Neurosci 10:78. https://doi.org/10.3389/fnmol.2017.00078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tsai H-F, Lin SJ, Li C, Hsieh M (2005) Decreased expression of Hsp27 and Hsp70 in transformed lymphoblastoid cells from patients with spinocerebellar ataxia type 7. Biochem Biophys Res Commun 334:1279–1286. https://doi.org/10.1016/J.BBRC.2005.06.207

    Article  CAS  PubMed  Google Scholar 

  89. Yamanaka T, Miyazaki H, Oyama F, Kurosawa M, Washizu C, Doi H, Nukina N (2008) Mutant Huntingtin reduces HSP70 expression through the sequestration of NF-Y transcription factor. EMBO J 27:827–839. https://doi.org/10.1038/emboj.2008.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Katsuno M, Sang C, Adachi H, Minamiyama M, Waza M, Tanaka F, Doyu M, Sobue G (2005) Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. Proc Natl Acad Sci USA 102:16801–16806. https://doi.org/10.1073/pnas.0506249102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hay DG, Sathasivam K, Tobaben S, Stahl B, Marber M, Mestril R, Mahal A, Smith DL, Woodman B, Bates GP (2004) Progressive decrease in chaperone protein levels in a mouse model of Huntington’s disease and induction of stress proteins as a therapeutic approach. Hum Mol Genet 13:1389–1405. https://doi.org/10.1093/hmg/ddh144

    Article  CAS  PubMed  Google Scholar 

  92. Seidel K, Meister M, Dugbartey GJ, Zijlstra MP, Vinet J, Brunt ER, van Leeuwen FW, Rüb U, Kampinga HH, den Dunnen WF (2012) Cellular protein quality control and the evolution of aggregates in spinocerebellar ataxia type 3 (SCA3). Neuropathol Appl Neurobiol 38:548–558. https://doi.org/10.1111/j.1365-2990.2011.01220.x

    Article  CAS  PubMed  Google Scholar 

  93. Park S-H, Kukushkin Y, Gupta R, Chen T, Konagai A, Hipp MS, Hayer-Hartl M, Hartl FU (2013) PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell 154:134–145. https://doi.org/10.1016/J.CELL.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  94. Merienne K, Helmlinger D, Perkin GR, Devys D, Trottier Y (2003) Polyglutamine expansion induces a protein-damaging stress connecting heat shock protein 70 to the JNK pathway. J Biol Chem 278:16957–16967. https://doi.org/10.1074/jbc.M212049200

    Article  CAS  PubMed  Google Scholar 

  95. Lee L-C, Chen C-M, Wang H-C, Hsieh H-H, Chiu I-S, Su M-T, Hsieh-Li H-M, Wu C-H, Lee G-C, Lee-Chen G-J, Lin J-Y (2012) Role of the CCAAT-binding protein NFY in SCA17 pathogenesis. PLoS One 7:e35302. https://doi.org/10.1371/journal.pone.0035302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chafekar SM, Duennwald ML (2012) Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin. PLoS One 7:e37929. https://doi.org/10.1371/journal.pone.0037929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Labbadia J, Cunliffe H, Weiss A, Katsyuba E, Sathasivam K, Seredenina T, Woodman B, Moussaoui S, Frentzel S, Luthi-Carter R, Paganetti P, Bates GP (2011) Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. J Clin Invest 121:3306–3319. https://doi.org/10.1172/JCI57413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Riva L, Koeva M, Yildirim F, Pirhaji L, Dinesh D, Mazor T, Duennwald ML, Fraenkel E (2012) Poly-glutamine expanded huntingtin dramatically alters the genome wide binding of HSF1. J Huntingtons Dis 1:33–45. https://doi.org/10.3233/JHD-2012-120020

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kim E, Wang B, Sastry N, Masliah E, Nelson PT, Cai H, Liao F-F (2016) NEDD4-mediated HSF1 degradation underlies α-synucleinopathy. Hum Mol Genet 25:211–222. https://doi.org/10.1093/hmg/ddv445

    Article  CAS  PubMed  Google Scholar 

  100. Huang S, Ling JJ, Yang S, Li X-J, Li S (2011) Neuronal expression of TATA box-binding protein containing expanded polyglutamine in knock-in mice reduces chaperone protein response by impairing the function of nuclear factor-Y transcription factor. Brain 134:1943–1958. https://doi.org/10.1093/brain/awr146

    Article  PubMed  PubMed Central  Google Scholar 

  101. Bersuker K, Hipp MS, Calamini B, Morimoto RI, Kopito RR (2013) Heat shock response activation exacerbates inclusion body formation in a cellular model of Huntington disease. J Biol Chem 288:23633–23638. https://doi.org/10.1074/jbc.C113.481945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Roth DM, Hutt DM, Tong J, Bouchecareilh M, Wang N, Seeley T, Dekkers JF, Beekman JM, Garza D, Drew L, Masliah E, Morimoto RI, Balch WE (2014) Modulation of the maladaptive stress response to manage diseases of protein folding. PLoS Biol 12:e1001998. https://doi.org/10.1371/journal.pbio.1001998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lieberman AP, Harmison G, Strand AD, Olson JM, Fischbeck KH (2002) Altered transcriptional regulation in cells expressing the expanded polyglutamine androgen receptor. Hum Mol Genet 11:1967–1976. https://doi.org/10.1093/hmg/11.17.1967

    Article  CAS  PubMed  Google Scholar 

  104. Li X, Wang C-E, Huang S, Xu X, Li X-J, Li H, Li S (2010) Inhibiting the ubiquitin-proteasome system leads to preferential accumulation of toxic N-terminal mutant huntingtin fragments. Hum Mol Genet 19:2445–2455. https://doi.org/10.1093/hmg/ddq127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hipp MS, Patel CN, Bersuker K, Riley BE, Kaiser SE, Shaler TA, Brandeis M, Kopito RR (2012) Indirect inhibition of 26S proteasome activity in a cellular model of Huntington’s disease. J Cell Biol 196:573–587. https://doi.org/10.1083/jcb.201110093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bennett EJ, Shaler TA, Woodman B, Ryu K-Y, Zaitseva TS, Becker CH, Bates GP, Schulman H, Kopito RR (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448:704–708. https://doi.org/10.1038/nature06022

    Article  CAS  PubMed  Google Scholar 

  107. Jana NR, Zemskov EA, Wang GH, Nukina N (2001) Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Hum Mol Genet 10:1049–1059. https://doi.org/10.1093/hmg/10.10.1049

    Article  CAS  PubMed  Google Scholar 

  108. Wang H-L, He C-Y, Chou A-H, Yeh T-H, Chen Y-L, Li AH (2007) Polyglutamine-expanded ataxin-7 decreases nuclear translocation of NF-κB p65 and impairs NF-κB activity by inhibiting proteasome activity of cerebellar neurons. Cell Signal 19:573–581. https://doi.org/10.1016/J.CELLSIG.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  109. Ding Q, Lewis JJ, Strum KM, Dimayuga E, Bruce-Keller AJ, Dunn JC, Keller JN (2002) Polyglutamine expansion, protein aggregation, proteasome activity, and neural survival. J Biol Chem 277:13935–13942. https://doi.org/10.1074/jbc.M107706200

    Article  CAS  PubMed  Google Scholar 

  110. Nath SR, Yu Z, Gipson TA, Marsh GB, Yoshidome E, Robins DM, Todi SV, Housman DE, Lieberman AP (2018) Androgen receptor polyglutamine expansion drives age-dependent quality control defects and muscle dysfunction. J Clin Invest 128:3630–3641. https://doi.org/10.1172/JCI99042

    Article  PubMed  PubMed Central  Google Scholar 

  111. Rusmini P, Polanco MJ, Cristofani R, Cicardi ME, Meroni M, Galbiati M, Piccolella M, Messi E, Giorgetti E, Lieberman AP, Milioto C, Rocchi A, Aggarwal T, Pennuto M, Crippa V, Poletti A (2015) Aberrant autophagic response in the muscle of a knock-in mouse model of spinal and bulbar muscular atrophy. Sci Rep 5:15174. https://doi.org/10.1038/srep15174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chua JP, Reddy SL, Merry DE, Adachi H, Katsuno M, Sobue G, Robins DM, Lieberman AP (2014) Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy. Hum Mol Genet 23:1376–1386. https://doi.org/10.1093/hmg/ddt527

    Article  CAS  PubMed  Google Scholar 

  113. Yu Z, Wang AM, Adachi H, Katsuno M, Sobue G, Yue Z, Robins DM, Lieberman AP (2011) Macroautophagy is regulated by the UPR–mediator CHOP and accentuates the phenotype of SBMA mice. PLoS Genet 7:e1002321. https://doi.org/10.1371/journal.pgen.1002321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ochaba J, Lukacsovich T, Csikos G, Zheng S, Margulis J, Salazar L, Mao K, Lau AL, Yeung SY, Humbert S, Saudou F, Klionsky DJ, Finkbeiner S, Zeitlin SO, Marsh JL, Housman DE, Thompson LM, Steffan JS (2014) Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc Natl Acad Sci USA 111:16889–16894. https://doi.org/10.1073/pnas.1420103111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hodges A, Strand AD, Aragaki AK, Kuhn A, Sengstag T, Hughes G, Elliston LA, Hartog C, Goldstein DR, Thu D, Hollingsworth ZR, Collin F, Synek B, Holmans PA, Young AB, Wexler NS, Delorenzi M, Kooperberg C, Augood SJ, Faull RL, Olson JM, Jones L, Luthi-Carter R (2006) Regional and cellular gene expression changes in human Huntington’s disease brain. Hum Mol Genet 15:965–977. https://doi.org/10.1093/hmg/ddl013

    Article  PubMed  Google Scholar 

  116. Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RA, Lazarowski ER, Damian VA, Masliah E, La Spada AR (2012) PGC-1α rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med 4:142ra97. https://doi.org/10.1126/scitranslmed.3003799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, de Vries R, Arias E, Harris S, Sulzer D, Cuervo AM (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci 13:567–576. https://doi.org/10.1038/nn.2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wong YC, Holzbaur EL (2014) The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J Neurosci 34:1293–1305. https://doi.org/10.1523/JNEUROSCI.1870-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Saxena S, Caroni P (2011) Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71:35–48. https://doi.org/10.1016/J.NEURON.2011.06.031

    Article  CAS  PubMed  Google Scholar 

  120. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2:679–689. https://doi.org/10.1038/ncpneuro0355

    Article  CAS  PubMed  Google Scholar 

  121. Zhao T, Hong Y, Li S, Li X-J (2016) Compartment-dependent degradation of mutant huntingtin accounts for its preferential accumulation in neuronal processes. J Neurosci 36:8317–8328. https://doi.org/10.1523/JNEUROSCI.0806-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhao T, Hong Y, Yin P, Li S, Li X-J (2017) Differential HspBP1 expression accounts for the greater vulnerability of neurons than astrocytes to misfolded proteins. Proc Natl Acad Sci USA 114:E7803–E7811. https://doi.org/10.1073/pnas.1710549114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gess B, Auer-Grumbach M, Schirmacher A, Strom T, Zitzelsberger M, Rudnik-Schoneborn S, Rohr D, Halfter H, Young P, Senderek J (2014) HSJ1-related hereditary neuropathies: novel mutations and extended clinical spectrum. Neurology 83:1726–1732. https://doi.org/10.1212/WNL.0000000000000966

    Article  CAS  PubMed  Google Scholar 

  124. Sanchez E, Darvish H, Mesias R, Taghavi S, Firouzabadi SG, Walker RH, Tafakhori A, Paisán-Ruiz C (2016) Identification of a large DNAJB2 deletion in a family with spinal muscular atrophy and parkinsonism. Hum Mutat 37:1180–1189. https://doi.org/10.1002/humu.23055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kakkar V, Månsson C, de Mattos EP, Bergink S, van der Zwaag M, van Waarde MAWH, Kloosterhuis NJ, Melki R, van Cruchten RTP, Al-Karadaghi S, Arosio P, Dobson CM, Knowles TPJ, Bates GP, van Deursen JM, Linse S, van de Sluis B, Emanuelsson C, Kampinga HH (2016) The S/T-rich motif in the DNAJB6 chaperone delays polyglutamine aggregation and the onset of disease in a mouse model. Mol Cell 62:272–283. https://doi.org/10.1016/J.MOLCEL.2016.03.017

    Article  CAS  PubMed  Google Scholar 

  126. Ruggieri A, Saredi S, Zanotti S, Pasanisi MB, Maggi L, Mora M (2016) DNAJB6 myopathies: focused review on an emerging and expanding group of myopathies. Front Mol Biosci 3:63. https://doi.org/10.3389/fmolb.2016.00063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zarouchlioti C, Parfitt DA, Li W, Gittings LM, Cheetham ME (2018) DNAJ proteins in neurodegeneration: essential and protective factors. Philos Trans R Soc Lond B Biol Sci 373:20160534. https://doi.org/10.1098/rstb.2016.0534

    Article  CAS  PubMed  Google Scholar 

  128. Li S, Zhang P, Freibaum BD, Kim NC, Kolaitis R-M, Molliex A, Kanagaraj AP, Yabe I, Tanino M, Tanaka S, Sasaki H, Ross ED, Taylor JP, Kim HJ (2016) Genetic interaction of hnRNPA2B1 and DNAJB6 in a Drosophila model of multisystem proteinopathy. Hum Mol Genet 25:936–950. https://doi.org/10.1093/hmg/ddv627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jaffer F, Murphy SM, Scoto M, Healy E, Rossor AM, Brandner S, Phadke R, Selcen D, Jungbluth H, Muntoni F, Reilly MM (2012) BAG3 mutations: another cause of giant axonal neuropathy. J Peripher Nerv Syst 17:210–216. https://doi.org/10.1111/j.1529-8027.2012.00409.x

    Article  CAS  PubMed  Google Scholar 

  130. Meister-Broekema M, Freilich R, Jagadeesan C, Rauch JN, Bengoechea R, Motley WW, Kuiper EFE, Minoia M, Furtado GV, van Waarde MAWH, Bird SJ, Rebelo A, Zuchner S, Pytel P, Scherer SS, Morelli FF, Carra S, Weihl CC, Bergink S, Gestwicki JE, Kampinga HH (2018) Myopathy associated BAG3 mutations lead to protein aggregation by stalling Hsp70 networks. Nat Commun 9:5342. https://doi.org/10.1038/s41467-018-07718-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kakkar V, Meister-Broekema M, Minoia M, Carra S, Kampinga HH (2014) Barcoding heat shock proteins to human diseases: looking beyond the heat shock response. Dis Model Mech 7:421–434. https://doi.org/10.1242/dmm.014563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kwok AS, Phadwal K, Turner BJ, Oliver PL, Raw A, Simon AK, Talbot K, Agashe VR (2011) HspB8 mutation causing hereditary distal motor neuropathy impairs lysosomal delivery of autophagosomes. J Neurochem 119:1155–1161. https://doi.org/10.1111/j.1471-4159.2011.07521.x

    Article  CAS  PubMed  Google Scholar 

  133. Kobayashi Y, Kume A, Li M, Doyu M, Hata M, Ohtsuka K, Sobue G (2000) Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J Biol Chem 275:8772–8778. https://doi.org/10.1074/JBC.275.12.8772

    Article  CAS  PubMed  Google Scholar 

  134. Adachi H, Katsuno M, Minamiyama M, Sang C, Pagoulatos G, Angelidis C, Kusakabe M, Yoshiki A, Kobayashi Y, Doyu M, Sobue G (2003) Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J Neurosci 23:2203–2211. https://doi.org/10.1523/JNEUROSCI.23-06-02203.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yang S, Huang S, Gaertig MA, Li X-J, Li S (2014) Age-dependent decrease in chaperone activity impairs MANF expression, leading to purkinje cell degeneration in inducible SCA17 mice. Neuron 81:349–365. https://doi.org/10.1016/J.NEURON.2013.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, Dillmann WH, Zoghbi HY (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10:1511–1518. https://doi.org/10.1093/hmg/10.14.1511

    Article  CAS  PubMed  Google Scholar 

  137. Jiang Y, Lv H, Liao M, Xu X, Huang S, Tan H, Peng T, Zhang Y, Li H (2012) GRP78 counteracts cell death and protein aggregation caused by mutant huntingtin proteins. Neurosci Lett 516:182–187. https://doi.org/10.1016/J.NEULET.2012.03.074

    Article  CAS  PubMed  Google Scholar 

  138. Jana NR, Tanaka M, Wang GH, Nukina N (2000) Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum Mol Genet 9:2009–2018. https://doi.org/10.1093/hmg/9.13.2009

    Article  CAS  PubMed  Google Scholar 

  139. Zhou H, Li SH, Li XJ (2001) Chaperone suppression of cellular toxicity of huntingtin is independent of polyglutamine aggregation. J Biol Chem 276:48417–48424. https://doi.org/10.1074/jbc.M104140200

    Article  CAS  PubMed  Google Scholar 

  140. Hansson O, Nylandsted J, Castilho RF, Leist M, Jäättelä M, Brundin P (2003) Overexpression of heat shock protein 70 in R6/2 Huntington’s disease mice has only modest effects on disease progression. Brain Res 970:47–57. https://doi.org/10.1016/S0006-8993(02)04275-0

    Article  CAS  PubMed  Google Scholar 

  141. Wacker JL, Huang S-Y, Steele AD, Aron R, Lotz GP, Nguyen Q, Giorgini F, Roberson ED, Lindquist S, Masliah E, Muchowski PJ (2009) Loss of Hsp70 exacerbates pathogenesis but not levels of fibrillar aggregates in a mouse model of Huntington’s disease. J Neurosci 29:9104–9114. https://doi.org/10.1523/JNEUROSCI.2250-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ormsby AR, Ramdzan YM, Mok Y-F, Jovanoski KD, Hatters DM (2013) A platform to view huntingtin exon 1 aggregation flux in the cell reveals divergent influences from chaperones hsp40 and hsp70. J Biol Chem 288:37192–37203. https://doi.org/10.1074/jbc.M113.486944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bailey CK, Andriola IF, Kampinga HH, Merry DE (2002) Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy. Hum Mol Genet 11:515–523. https://doi.org/10.1093/hmg/11.5.515

    Article  CAS  PubMed  Google Scholar 

  144. Fayazi Z, Ghosh S, Marion S, Bao X, Shero M, Kazemi-Esfarjani P (2006) A Drosophila ortholog of the human MRJ modulates polyglutamine toxicity and aggregation. Neurobiol Dis 24:226–244. https://doi.org/10.1016/j.nbd.2006.06.015

    Article  CAS  PubMed  Google Scholar 

  145. Kazemi-Esfarjani P, Benzer S (2000) Genetic suppression of polyglutamine toxicity in Drosophila. Science 287:1837–1840. https://doi.org/10.1126/science.287.5459.1837

    Article  CAS  PubMed  Google Scholar 

  146. Gao XC, Zhou CJ, Zhou ZR, Zhang YH, Zheng XM, Song AX, Hu HY (2011) Co-chaperone HSJ1a dually regulates the proteasomal degradation of ataxin-3. PLoS One 6:e19763. https://doi.org/10.1371/journal.pone.0019763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Labbadia J, Novoselov SS, Bett JS, Weiss A, Paganetti P, Bates GP, Cheetham ME (2012) Suppression of protein aggregation by chaperone modification of high molecular weight complexes. Brain 135:1180–1196. https://doi.org/10.1093/brain/aws022

    Article  PubMed  PubMed Central  Google Scholar 

  148. Adachi H, Waza M, Tokui K, Katsuno M, Minamiyama M, Tanaka F, Doyu M, Sobue G (2007) CHIP overexpression reduces mutant androgen receptor protein and ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model. Neurobiol Dis 27:5115–5126. https://doi.org/10.1523/JNEUROSCI.1242-07.2007

    Article  CAS  Google Scholar 

  149. Morishima Y, Wang AM, Yu Z, Pratt WB, Osawa Y, Lieberman AP (2008) CHIP deletion reveals functional redundancy of E3 ligases in promoting degradation of both signaling proteins and expanded glutamine proteins. Hum Mol Genet 17:3942–3952. https://doi.org/10.1093/hmg/ddn296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jana NR, Dikshit P, Goswami A, Kotliarova S, Murata S, Tanaka K, Nukina N (2005) Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J Biol Chem 280:11635–11640. https://doi.org/10.1074/jbc.M412042200

    Article  CAS  PubMed  Google Scholar 

  151. Miller VM, Nelson RF, Gouvion CM, Williams A, Rodriguez-Lebron E, Harper SQ, Davidson BL, Rebagliati MR, Paulson HL (2005) CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J Neurosci 25:9152–9161. https://doi.org/10.1523/JNEUROSCI.3001-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Al-Ramahi I, Lam YC, Chen H-K, de Gouyon B, Zhang M, Pérez AM, Branco J, de Haro M, Patterson C, Zoghbi HY, Botas J (2006) CHIP protects from the neurotoxicity of expanded and wild-type ataxin-1 and promotes their ubiquitination and degradation. J Biol Chem 281:26714–26724. https://doi.org/10.1074/jbc.M601603200

    Article  CAS  PubMed  Google Scholar 

  153. Choi JY, Ryu JH, Kim H-S, Park SG, Bae K-H, Kang S, Myung PK, Cho S, Park BC, Lee DH (2007) Co-chaperone CHIP promotes aggregation of ataxin-1. Mol Cell Neurosci 34:69–79. https://doi.org/10.1016/J.MCN.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  154. Durcan TM, Fon EA (2013) Ataxin-3 and its e3 partners: implications for machado-joseph disease. Front Neurol 4:46. https://doi.org/10.3389/fneur.2013.00046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang AM, Miyata Y, Klinedinst S, Peng H-M, Chua JP, Komiyama T, Li X, Morishima Y, Merry DE, Pratt WB, Osawa Y, Collins CA, Gestwicki JE, Lieberman AP (2013) Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat Chem Biol 9:112–118. https://doi.org/10.1038/nchembio.1140

    Article  CAS  PubMed  Google Scholar 

  156. Carra S, Seguin SJ, Lambert H, Landry J (2008) HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. J Biol Chem 283:1437–1444. https://doi.org/10.1074/jbc.M706304200

    Article  CAS  PubMed  Google Scholar 

  157. Gestwicki JE, Shao H (2019) Inhibitors and chemical probes for molecular chaperone networks. J Biol Chem 294:2151–2161. https://doi.org/10.1074/jbc.TM118.002813

    Article  CAS  PubMed  Google Scholar 

  158. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810. https://doi.org/10.1038/nature02998

    Article  CAS  PubMed  Google Scholar 

  159. Repalli J, Meruelo D (2015) Screening strategies to identify HSP70 modulators to treat Alzheimer’s disease. Drug Des Devel Ther 9:321–331. https://doi.org/10.2147/DDDT.S72165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Shorter J (2017) Designer protein disaggregases to counter neurodegenerative disease. Curr Opin Genet Dev 44:1–8. https://doi.org/10.1016/j.gde.2017.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684. https://doi.org/10.1007/s00018-004-4464-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Nadler SG, Tepper MA, Schacter B, Mazzucco CE (1992) Interaction of the immunosuppressant deoxyspergualin with a member of the Hsp70 family of heat shock proteins. Science 258:484–486. https://doi.org/10.1126/science.1411548

    Article  CAS  PubMed  Google Scholar 

  163. Mazzucco CE, Nadler SG (1993) A member of the Hsp70 family of heat-shock proteins is a putative target for the immunosuppressant 15-deoxyspergualin. Ann N Y Acad Sci 685:202–204. https://doi.org/10.1111/j.1749-6632.1993.tb35866.x

    Article  CAS  PubMed  Google Scholar 

  164. Nadler SG, Dischino DD, Malacko AR, Cleaveland JS, Fujihara SM, Marquardt H (1998) Identification of a binding site on Hsc70 for the immunosuppressant 15-deoxyspergualin. Biochem Biophys Res Commun 253:176–180. https://doi.org/10.1006/bbrc.1998.9775

    Article  CAS  PubMed  Google Scholar 

  165. Brodsky JL (1999) Selectivity of the molecular chaperone-specific immunosuppressive agent 15-deoxyspergualin: modulation of HSC70 ATPase activity without compromising DnaJ chaperone interactions. Biochem Pharmacol 57:877–880. https://doi.org/10.1016/S0006-2952(98)00376-1

    Article  CAS  PubMed  Google Scholar 

  166. Nadler SG, Eversole AC, Tepper MA, Cleaveland JS (1995) Elucidating the mechanism of action of the immunosuppressant 15-deoxyspergualin. Ther Drug Monit 17:700–703. https://doi.org/10.1097/00007691-199512000-00026

    Article  CAS  PubMed  Google Scholar 

  167. Nadeau K, Nadler SG, Saulnier M, Tepper MA, Walsh CT (1994) Quantitation of the interaction of the immunosuppressant deoxyspergualin and analogs with Hsc70 and Hsp90. Biochemistry 33:2561–2567. https://doi.org/10.1021/bi00175a027

    Article  CAS  PubMed  Google Scholar 

  168. Fewell SW, Day BW, Brodsky JL (2001) Identification of an inhibitor of hsc70-mediated protein translocation and ATP hydrolysis. J Biol Chem 276:910–914. https://doi.org/10.1074/jbc.M008535200

    Article  CAS  PubMed  Google Scholar 

  169. Fewell SW, Smith CM, Lyon MA, Dumitrescu TP, Wipf P, Day BW, Brodsky JL (2004) Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity. J Biol Chem 279:51131–51140. https://doi.org/10.1074/jbc.M404857200

    Article  CAS  PubMed  Google Scholar 

  170. Evans CG, Chang L, Gestwicki JE (2010) Heat shock protein 70 (hsp70) as an emerging drug target. J Med Chem 53:4585–4602. https://doi.org/10.1021/jm100054f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Chang L, Bertelsen EB, Wisén S, Larsen EM, Zuiderweg ER, Gestwicki JE (2008) High-throughput screen for small molecules that modulate the ATPase activity of the molecular chaperone DnaK. Anal Biochem 372:167–176. https://doi.org/10.1016/j.ab.2007.08.020

    Article  CAS  PubMed  Google Scholar 

  172. Evans CG, Wisén S, Gestwicki JE (2006) Heat shock proteins 70 and 90 inhibit early stages of amyloid beta-(1-42) aggregation in vitro. J Biol Chem 281:33182–33191. https://doi.org/10.1074/jbc.M606192200

    Article  CAS  PubMed  Google Scholar 

  173. Wisén S, Bertelsen EB, Thompson AD, Patury S, Ung P, Chang L, Evans CG, Walter GM, Wipf P, Carlson HA, Brodsky JL, Zuiderweg ER, Gestwicki JE (2010) Binding of a small molecule at a protein-protein interface regulates the chaperone activity of Hsp70-Hsp40. ACS Chem Biol 5:611–622. https://doi.org/10.1021/cb1000422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chafekar SM, Wisén S, Thompson AD, Echeverria A, Walter GM, Evans CG, Makley LN, Gestwicki JE, Duennwald ML (2012) Pharmacological tuning of heat shock protein 70 modulates polyglutamine toxicity and aggregation. ACS Chem Biol 7:1556–1564. https://doi.org/10.1021/cb300166p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Jinwal UK, Miyata Y, Koren J 3rd, Jones JR, Trotter JH, Chang L, O’leary J, Morgan D, Lee DC, Shults CL, Rousaki A, Weeber EJ, Zuiderweg ER, Gestwicki JE, Dickey CA (2009) Chemical manipulation of hsp70 ATPase activity regulates tau stability. J Neurosci 29:12079–12088. https://doi.org/10.1523/JNEUROSCI.3345-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Miyata Y, Rauch JN, Jinwal UK, Thompson AD, Srinivasan S, Dickey CA, Gestwicki JE (2012) Cysteine reactivity distinguishes redox sensing by the heat-inducible and constitutive forms of heat shock protein 70. Chem Biol 19:1391–1399. https://doi.org/10.1016/j.chembiol.2012.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. O’Leary JC, Li Q, Marinec P, Blair LJ, Congdon EE, Johnson AG, Jinwal UK, Koren J, Jones JR, Kraft C, Peters M, Abisambra JF, Duff KE, Weeber EJ, Gestwicki JE, Dickey CA (2010) Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Mol Neurodegener 5:45. https://doi.org/10.1016/j.chembiol.2012.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wischik CM, Staff RT, Wischik DJ, Bentham P, Murray AD, Storey JM, Kook KA, Harrington CR (2015) Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate alzheimer’s disease. J Alzheimer’s Dis 44:705–720. https://doi.org/10.3233/JAD-142874

    Article  CAS  Google Scholar 

  179. Wischik CM, Edwards PC, Lai RY, Roth M, Harrington CR (1996) Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci USA 93:11213–11218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Congdon EE, Wu JW, Myeku N, Figueroa YH, Herman M, Marinec PS, Gestwicki JE, Dickey CA, Yu WH, Duff KE (2012) Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 8:609–622. https://doi.org/10.4161/auto.19048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Sontag EM, Lotz GP, Agrawal N, Tran A, Aron R, Yang G, Necula M, Lau A, Finkbeiner S, Glabe C, Marsh JL, Muchowski PJ, Thompson LM (2012) Methylene blue modulates huntingtin aggregation intermediates and is protective in Huntington’s disease models. J Neurosci 32:11109–11119. https://doi.org/10.1523/JNEUROSCI.0895-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Koya K, Li Y, Wang H, Ukai T, Tatsuta N, Kawakami M, Shishido T, Chen LB (1996) MKT-077, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res 56:538–543

    CAS  PubMed  Google Scholar 

  183. Koren J, Miyata Y, Kiray J, O’Leary JC, Nguyen L, Guo J, Blair LJ, Li X, Jinwal UK, Cheng JQ, Gestwicki JE, Dickey CA (2012) Rhodacyanine derivative selectively targets cancer cells and overcomes tamoxifen resistance. PLoS One 7:e35566. https://doi.org/10.1371/journal.pone.0035566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Modica-Napolitano JS, Koya K, Weisberg E, Brunelli BT, Li Y, Chen LB (1996) Selective damage to carcinoma mitochondria by the rhodacyanine MKT-077. Cancer Res 56:544–550

    CAS  PubMed  Google Scholar 

  185. Chiba Y, Kubota T, Watanabe M, Otani Y, Teramoto T, Matsumoto Y, Koya K, Kitajima M (1998) Selective antitumor activity of MKT-077, a delocalized lipophilic cation, on normal cells and cancer cells in vitro. J Surg Oncol 69:105–110

    Article  CAS  PubMed  Google Scholar 

  186. Propper DJ, Braybrooke JP, Taylor DJ, Lodi R, Styles P, Cramer JA, Collins WC, Levitt NC, Talbot DC, Ganesan TS, Harris AL (1999) Phase I trial of the selective mitochondrial toxin MKT077 in chemo-resistant solid tumours. Ann Oncol 10:923–927. https://doi.org/10.1023/a:1008336904585

    Article  CAS  PubMed  Google Scholar 

  187. Tikoo A, Shakri R, Connolly L, Hirokawa Y, Shishido T, Bowers B, Ye LH, Kohama K, Simpson RJ, Maruta H (2000) Treatment of ras-induced cancers by the F-actin-bundling drug MKT-077. Cancer J 6:162–168

    CAS  PubMed  Google Scholar 

  188. Wadhwa R, Sugihara T, Yoshida A, Nomura H, Reddel RR, Simpson R, Maruta H, Kaul SC (2000) Selective toxicity of MKT-077 to cancer cells is mediated by its binding to the Hsp70 family protein mot-2 and reactivation of p53 function. Cancer Res 60:6818–6821. https://doi.org/10.1002/(SICI)1096-9098(199810)69:23.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  189. Miyata Y, Li X, Lee H-F, Jinwal UK, Srinivasan SR, Seguin SP, Young ZT, Brodsky JL, Dickey CA, Sun D, Gestwicki JE (2013) Synthesis and initial evaluation of YM-08, a blood-brain barrier permeable derivative of the heat shock protein 70 (Hsp70) inhibitor MKT-077, which reduces tau levels. ACS Chem Neurosci 4:930–939. https://doi.org/10.1021/cn300210g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kawakami M, Koya K, Ukai T, Tatsuta N, Ikegawa A, Ogawa K, Shishido T, Chen LB (1997) Synthesis and evaluation of novel rhodacyanine dyes that exhibit antitumor activity. J Med Chem 40:3151–3160. https://doi.org/10.1021/JM9702692

    Article  CAS  PubMed  Google Scholar 

  191. Kawakami M, Koya K, Ukai T, Tatsuta N, Ikegawa A, Ogawa K, Shishido T, Chen LB (1998) Structure-activity of novel rhodacyanine dyes as antitumor agents. J Med Chem 41:130–142. https://doi.org/10.1021/jm970590k

    Article  CAS  PubMed  Google Scholar 

  192. Li X, Srinivasan SR, Connarn J, Ahmad A, Young ZT, Kabza AM, Zuiderweg ERP, Sun D, Gestwicki JE (2013) Analogues of the allosteric heat shock protein 70 (Hsp70) inhibitor, MKT-077, as anti-cancer agents. ACS Med Chem Lett 4:1042–1047. https://doi.org/10.1021/ml400204n

    Article  CAS  PubMed Central  Google Scholar 

  193. Colvin TA, Gabai VL, Gong J, Calderwood SK, Li H, Gummuluru S, Matchuk ON, Smirnova SG, Orlova NV, Zamulaeva IA, Garcia-Marcos M, Li X, Young ZT, Rauch JN, Gestwicki JE, Takayama S, Sherman MY (2014) Hsp70-Bag3 interactions regulate cancer-related signaling networks. Cancer Res 74:4731–4740. https://doi.org/10.1158/0008-5472.CAN-14-0747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Rousaki A, Miyata Y, Jinwal UK, Dickey CA, Gestwicki JE, Zuiderweg ERP (2011) Allosteric drugs: the interaction of antitumor compound MKT-077 with human Hsp70 chaperones. J Mol Biol 411:614–632. https://doi.org/10.1016/j.jmb.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Amick J, Schlanger SE, Wachnowsky C, Moseng MA, Emerson CC, Dare M, Luo W-I, Ithychanda SS, Nix JC, Cowan JA, Page RC, Misra S (2014) Crystal structure of the nucleotide-binding domain of mortalin, the mitochondrial Hsp70 chaperone. Protein Sci 23:833–842. https://doi.org/10.1002/pro.2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Li X, Colvin T, Rauch JN, Acosta-Alvear D, Kampmann M, Dunyak B, Hann B, Aftab BT, Murnane M, Cho M, Walter P, Weissman JS, Sherman MY, Gestwicki JE (2015) Validation of the Hsp70-Bag3 protein-protein interaction as a potential therapeutic target in cancer. Mol Cancer Ther 14:642–648. https://doi.org/10.1158/1535-7163.MCT-14-0650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Abisambra J, Jinwal UK, Miyata Y, Rogers J, Blair L, Li X, Seguin SP, Wang L, Jin Y, Bacon J, Brady S, Cockman M, Guidi C, Zhang J, Koren J, Young ZT, Atkins CA, Zhang B, Lawson LY, Weeber EJ, Brodsky JL, Gestwicki JE, Dickey CA (2013) Allosteric heat shock protein 70 inhibitors rapidly rescue synaptic plasticity deficits by reducing aberrant tau. Biol Psychiatry 74:367–374. https://doi.org/10.1016/j.biopsych.2013.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Morishima Y, Lau M, Peng H-M, Miyata Y, Gestwicki JE, Pratt WB, Osawa Y (2011) Heme-dependent activation of neuronal nitric oxide synthase by cytosol is due to Hsp70-dependent, thioredoxin-mediated thiol-disulfide interchange in the heme/substrate binding cleft. Biochemistry 50:7146–7156. https://doi.org/10.1021/bi200751t

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratories was supported by the National Institutes of Health (NS101030, NS055746 to YO and APL; GM077430 to YO; T32-GM007767 to AKD), and the PhRMA Foundation (Predoctoral Fellowship in Pharmacology/Toxicology to AKD). The authors are all participants in The University of Michigan Medical School’s Protein Folding Diseases Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Lieberman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, A.K., Pratt, W.B., Lieberman, A.P. et al. Targeting Hsp70 facilitated protein quality control for treatment of polyglutamine diseases. Cell. Mol. Life Sci. 77, 977–996 (2020). https://doi.org/10.1007/s00018-019-03302-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03302-2

Keywords

Navigation