Skip to main content
Log in

RNA polymerase between lesion bypass and DNA repair

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

DNA damage leads to heritable changes in the genome via DNA replication. However, as the DNA helix is the site of numerous other transactions, notably transcription, DNA damage can have diverse repercussions on cellular physiology. In particular, DNA lesions have distinct effects on the passage of transcribing RNA polymerases, from easy bypass to almost complete block of transcription elongation. The fate of the RNA polymerase positioned at a lesion is largely determined by whether the lesion is structurally subtle and can be accommodated and eventually bypassed, or bulky, structurally distorting and requiring remodeling/complete dissociation of the transcription elongation complex, excision, and repair. Here we review cellular responses to DNA damage that involve RNA polymerases with a focus on bacterial transcription-coupled nucleotide excision repair and lesion bypass via transcriptional mutagenesis. Emphasis is placed on the explosion of new structural information on RNA polymerases and relevant DNA repair factors and the mechanistic models derived from it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TC-NER:

Transcription-coupled nucleotide excision repair

GG-NER:

Global genome nucleotide excision repair

RNAP:

RNA polymerase

TM:

Transcriptional mutagenesis

TEC:

Transcription elongation complex

SAXS:

Small-angle X-ray scattering

TRCF:

Transcription-repair coupling factor

TRG:

Translocation in RecG

RH:

Relay helix

TAM:

Transcription-associated mutagenesis

NTD:

N-terminal domain

CTD:

C-terminal domain

References

  1. Lobry JR (1996) Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13:660–665

    PubMed  CAS  Google Scholar 

  2. Marsolier-Kergoat MC, Goldar A (2012) DNA replication induces compositional biases in yeast. Mol Biol Evol 29:893–904

    PubMed  CAS  Google Scholar 

  3. Francino MP et al (1996) Asymmetries generated by transcription-coupled repair in enterobacterial genes. Science 272:107–109

    PubMed  CAS  Google Scholar 

  4. Green P et al (2003) Transcription-associated mutational asymmetry in mammalian evolution. Nat Genet 33:514–517

    PubMed  CAS  Google Scholar 

  5. Mugal CF et al (2009) Transcription-induced mutational strand bias and its effect on substitution rates in human genes. Mol Biol Evol 26:131–142

    PubMed  CAS  Google Scholar 

  6. Huvet M et al (2007) Human gene organization driven by the coordination of replication and transcription. Genome Res 17:1278–1285

    PubMed  CAS  Google Scholar 

  7. Beletskii A, Bhagwat AS (1996) Transcription-induced mutations: increase in C to T mutations in the non-transcribed strand during transcription in Escherichia coli. Proc Natl Acad Sci USA 93:13919–13924

    PubMed  CAS  Google Scholar 

  8. Sekine S et al (2012) Structural basis of transcription by bacterial and eukaryotic RNA polymerases. Curr Opin Struct Biol 22:110–118

    PubMed  CAS  Google Scholar 

  9. Francino MP, Ochman H (2001) Deamination as the basis of strand-asymmetric evolution in transcribed Escherichia coli sequences. Mol Biol Evol 18:1147–1150

    PubMed  CAS  Google Scholar 

  10. Beletskii A et al (2000) Mutations induced by bacteriophage T7 RNA polymerase and their effects on the composition of the T7 genome. J Mol Biol 300:1057–1065

    PubMed  CAS  Google Scholar 

  11. Kim N, Jinks-Robertson S (2012) Transcription as a source of genome instability. Nat Rev Genet 13:204–214

    PubMed  CAS  Google Scholar 

  12. Tornaletti S, Hanawalt PC (1999) Effect of DNA lesions on transcription elongation. Biochimie 81:139–146

    PubMed  CAS  Google Scholar 

  13. Scicchitano DA et al (2004) Transcription and DNA adducts: what happens when the message gets cut off? DNA Repair (Amst) 3:1537–1548

    CAS  Google Scholar 

  14. Witkin EM (1966) Radiation-induced mutations and their repair. Science 152:1345–1353

    PubMed  CAS  Google Scholar 

  15. Bockrath RC, Palmer JE (1977) Differential repair of premutational UV-lesions at tRNA genes in E. coli. Mol Gen Genet 156:133–140

    PubMed  CAS  Google Scholar 

  16. Mullenders LH et al (1984) Preferential repair of nuclear matrix associated DNA in xeroderma pigmentosum complementation group C. Mutat Res 141:75–82

    PubMed  CAS  Google Scholar 

  17. Bohr VA et al (1985) DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40:359–369

    PubMed  CAS  Google Scholar 

  18. Mellon I, Hanawalt PC (1989) Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature 342:95–98

    PubMed  CAS  Google Scholar 

  19. Mellon I et al (1987) Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51:241–249

    PubMed  CAS  Google Scholar 

  20. van Hoffen A et al (1993) Deficient repair of the transcribed strand of active genes in Cockayne’s syndrome cells. Nucleic Acids Res 21:5890–5895

    PubMed  Google Scholar 

  21. Orren DK et al (1996) The human CSB (ERCC6) gene corrects the transcription-coupled repair defect in the CHO cell mutant UV61. Nucleic Acids Res 24:3317–3322

    PubMed  CAS  Google Scholar 

  22. Proietti-De-Santis L et al (2006) Cockayne syndrome B protein regulates the transcriptional program after UV irradiation. EMBO J 25:1915–1923

    PubMed  CAS  Google Scholar 

  23. Balajee AS et al (1997) Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells. Proc Natl Acad Sci USA 94:4306–4311

    PubMed  CAS  Google Scholar 

  24. Selby CP, Sancar A (1997) Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc Natl Acad Sci USA 94:11205–11209

    PubMed  CAS  Google Scholar 

  25. Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485

    PubMed  CAS  Google Scholar 

  26. Zhang X et al (2012) Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Nat Genet 44:593–597

    PubMed  CAS  Google Scholar 

  27. Horibata K et al (2004) Complete absence of Cockayne syndrome group B gene product gives rise to UV-sensitive syndrome but not Cockayne syndrome. Proc Natl Acad Sci USA 101:15410–15415

    PubMed  CAS  Google Scholar 

  28. Nik-Zainal S et al (2012) Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–993

    PubMed  CAS  Google Scholar 

  29. Fousteri M, Mullenders LH (2008) Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res 18:73–84

    PubMed  CAS  Google Scholar 

  30. Frontini M, Proietti-De-Santis L (2012) Interaction between the Cockayne syndrome B and p53 proteins: implications for aging. Aging 4:89–97

    PubMed  CAS  Google Scholar 

  31. Nouspikel T (2009) DNA repair in mammalian cells : nucleotide excision repair: variations on versatility. Cell Mol Life Sci 6:994–1009

    Google Scholar 

  32. Nouspikel T (2008) Nucleotide excision repair and neurological diseases. DNA Repair (Amst) 7:1155–1167

    CAS  Google Scholar 

  33. Sancar A et al (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    PubMed  CAS  Google Scholar 

  34. Selby CP, Sancar A (1990) Transcription preferentially inhibits nucleotide excision repair of the template DNA strand in vitro. J Biol Chem 265:21330–21336

    PubMed  CAS  Google Scholar 

  35. Selby CP et al (1997) RNA polymerase II stalled at a thymine dimer: footprint and effect on excision repair. Nucleic Acids Res 25:787–793

    PubMed  CAS  Google Scholar 

  36. Landick R (2006) The regulatory roles and mechanism of transcriptional pausing. Biochem Soc Trans 34:1062–1066

    PubMed  CAS  Google Scholar 

  37. Tornaletti S et al (2006) Transcription arrest at an abasic site in the transcribed strand of template DNA. Chem Res Toxicol 19:1215–1220

    PubMed  CAS  Google Scholar 

  38. Tornaletti S et al (2004) Effect of 8-oxoguanine on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. DNA Repair (Amst) 3:483–494

    CAS  Google Scholar 

  39. Schalow BJ et al (2012) Mfd is required for rapid recovery of transcription following UV-induced DNA damage but not oxidative DNA damage in Escherichia coli. J Bacteriol 194:2637–2645

    PubMed  CAS  Google Scholar 

  40. Smith AJ, Savery NJ (2008) Effects of the bacterial transcription-repair coupling factor during transcription of DNA containing non-bulky lesions. DNA Repair (Amst) 7:1670–1679

    CAS  Google Scholar 

  41. Bregeon D et al (2003) Transcriptional mutagenesis induced by uracil and 8-oxoguanine in Escherichia coli. Mol Cell 12:959–970

    PubMed  CAS  Google Scholar 

  42. Clauson CL et al (2010) Dynamic flexibility of DNA repair pathways in growth-arrested Escherichia coli. DNA Repair (Amst) 9:842–847

    CAS  Google Scholar 

  43. Salinas-Rios V et al (2011) DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability. Nucleic Acids Res 39:7444–7454

    PubMed  CAS  Google Scholar 

  44. Lin Y, Wilson JH (2007) Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair. Mol Cell Biol 27:6209–6217

    PubMed  CAS  Google Scholar 

  45. Belotserkovskii BP, Hanawalt PC (2011) Anchoring nascent RNA to the DNA template could interfere with transcription. Biophys J 100:675–684

    PubMed  CAS  Google Scholar 

  46. Bentin T et al (2005) Transcription arrest caused by long nascent RNA chains. Biochim Biophys Acta 1727:97–105

    PubMed  CAS  Google Scholar 

  47. Belotserkovskii BP et al (2010) Mechanisms and implications of transcription blockage by guanine-rich DNA sequences. Proc Natl Acad Sci USA 107:12816–12821

    PubMed  CAS  Google Scholar 

  48. Krasilnikova MM et al (1998) Transcription through a simple DNA repeat blocks replication elongation. EMBO J 17:5095–5102

    PubMed  CAS  Google Scholar 

  49. Tornaletti S et al (1999) Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA. J Biol Chem 274:24124–24130

    PubMed  CAS  Google Scholar 

  50. Margison GP et al (2007) Alkyltransferase-like proteins. DNA Repair (Amst) 6:1222–1228

    CAS  Google Scholar 

  51. Latypov VF et al (2012) Atl1 regulates choice between global genome and transcription-coupled repair of O(6)-alkylguanines. Mol Cell 47:50–60

    PubMed  CAS  Google Scholar 

  52. Mazon G et al (2009) The alkyltransferase-like ybaZ gene product enhances nucleotide excision repair of O(6)-alkylguanine adducts in E. coli. DNA Repair (Amst) 8:697–703

    CAS  Google Scholar 

  53. Lindsey-Boltz LA, Sancar A (2007) RNA polymerase: the most specific damage recognition protein in cellular responses to DNA damage? Proc Natl Acad Sci USA 104:13213–13214

    PubMed  CAS  Google Scholar 

  54. Reardon JT et al (1993) Comparative analysis of binding of human damaged DNA-binding protein (XPE) and Escherichia coli damage recognition protein (UvrA) to the major ultraviolet photoproducts: t[c, s]T, T[t, s]T, T[6-4]T, and T[Dewar]T. J Biol Chem 268:21301–21308

    PubMed  CAS  Google Scholar 

  55. Sugasawa K (2009) UV-DDB: a molecular machine linking DNA repair with ubiquitination. DNA Repair (Amst) 8:969–972

    CAS  Google Scholar 

  56. Tennyson CN et al (1995) The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 9:184–190

    PubMed  CAS  Google Scholar 

  57. Hanawalt PC, Spivak G (2008) Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 9:958–970

    PubMed  CAS  Google Scholar 

  58. Tremeau-Bravard A et al (2004) Fate of RNA polymerase II stalled at a cisplatin lesion. J Biol Chem 279:7751–7759

    PubMed  CAS  Google Scholar 

  59. Selby CP et al (1991) Escherichia coli mfd mutant deficient in “mutation frequency decline” lacks strand-specific repair: in vitro complementation with purified coupling factor. Proc Natl Acad Sci USA 88:11574–11578

    PubMed  CAS  Google Scholar 

  60. Selby CP, Sancar A (1991) Gene- and strand-specific repair in vitro: partial purification of a transcription-repair coupling factor. Proc Natl Acad Sci USA 88:8232–8236

    PubMed  CAS  Google Scholar 

  61. Deaconescu AM et al (2006) Structural basis for bacterial transcription-coupled DNA repair. Cell 124:507–520

    PubMed  CAS  Google Scholar 

  62. Selby CP, Sancar A (1993) Molecular mechanism of transcription-repair coupling. Science 260:53–58

    PubMed  CAS  Google Scholar 

  63. Selby CP, Sancar A (1994) Mechanisms of transcription-repair coupling and mutation frequency decline. Microbiol Rev 58:317–329

    PubMed  CAS  Google Scholar 

  64. Selby CP, Sancar A (1995) Structure and function of transcription-repair coupling factor II. Catalytic properties. J Biol Chem 270:4890–4895

    PubMed  CAS  Google Scholar 

  65. Deaconescu AM et al (2012) Nucleotide excision repair (NER) machinery recruitment by the transcription-repair coupling factor involves unmasking of a conserved intramolecular interface. Proc Natl Acad Sci USA 109:3353–3358

    PubMed  CAS  Google Scholar 

  66. Prabha S et al (2011) Distinct properties of hexameric but functionally conserved Mycobacterium tuberculosis transcription-repair coupling factor. PLoS One 6:e19131

    PubMed  CAS  Google Scholar 

  67. Park J-S et al (2002) E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109:757–767

    PubMed  CAS  Google Scholar 

  68. Kunala S, Brash DE (1995) Intragenic domains of strand-specific repair in Escherichia coli. J Mol Biol 246:264–272

    PubMed  CAS  Google Scholar 

  69. Park JS, Roberts JW (2006) Role of DNA bubble rewinding in enzymatic transcription termination. Proc Natl Acad Sci USA 103:4870–4875

    PubMed  CAS  Google Scholar 

  70. Smith AJ et al (2007) Controlling the motor activity of a transcription-repair coupling factor: autoinhibition and the role of RNA polymerase. Nucleic Acids Res 35:1802–1811

    PubMed  CAS  Google Scholar 

  71. Murphy MN et al (2009) An N-terminal clamp restrains the motor domains of the bacterial transcription-repair coupling factor Mfd. Nucleic Acids Res 37:6042–6053

    PubMed  CAS  Google Scholar 

  72. Howan K et al (2012) Initiation of transcription-coupled repair characterized at single-molecule resolution. Nature 490:431–434

    PubMed  CAS  Google Scholar 

  73. Deaconescu AM, Darst SA (2005) Crystallization and preliminary structure determination of Escherichia coli Mfd, the transcription-repair coupling factor. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:1062–1064

    PubMed  CAS  Google Scholar 

  74. Chambers AL et al (2003) A DNA translocation motif in the bacterial transcription–repair coupling factor, Mfd. Nucleic Acids Res 31:6409–6418

    PubMed  CAS  Google Scholar 

  75. Smith AJ et al (2012) Multipartite control of the DNA translocase, Mfd. Nucleic Acids Res 40:10408–10416

    PubMed  CAS  Google Scholar 

  76. Smith AJ, Savery NJ (2005) RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair. Nucleic Acids Res 33:755–764

    PubMed  CAS  Google Scholar 

  77. Deaconescu AM et al (2012) Interplay of DNA repair with transcription: from structures to mechanisms. Trends Biochem Sci 37:543–552

    PubMed  CAS  Google Scholar 

  78. Assenmacher N et al (2006) Structural basis for transcription-coupled repair: the N terminus of Mfd resembles UvrB with degenerate ATPase motifs. J Mol Biol 355:675–683

    PubMed  CAS  Google Scholar 

  79. Manelyte L et al (2010) Regulation and rate enhancement during transcription-coupled DNA repair. Mol Cell 40:714–724

    PubMed  CAS  Google Scholar 

  80. Selby CP, Sancar A (1995) Structure and function of transcription-repair coupling factor. I. Structural domains and binding properties. J Biol Chem 270:4882–4889

    PubMed  CAS  Google Scholar 

  81. Crowley DJ, Hanawalt PC (1998) Induction of the SOS response increases the efficiency of global nucleotide excision repair of cyclobutane pyrimidine dimers, but not 6–4 photoproducts, in UV-irradiated Escherichia coli. J Bacteriol 180:3345–3352

    PubMed  CAS  Google Scholar 

  82. Westblade LF et al (2010) Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction. Nucleic Acids Res 38:8357–8369

    PubMed  CAS  Google Scholar 

  83. Brueckner F et al (2007) CPD damage recognition by transcribing RNA polymerase II. Science 315:859–862

    PubMed  CAS  Google Scholar 

  84. Stallings CL et al (2009) CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence. Cell 138:146–159

    PubMed  CAS  Google Scholar 

  85. Weiss LA et al (2012) Interaction of CarD with RNA polymerase mediates Mycobacterium tuberculosis viability, rifampin resistance, and pathogenesis. J Bacteriol 194:5621–5631

    PubMed  CAS  Google Scholar 

  86. Mahdi AA et al (2003) A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins. EMBO J 22:724–734

    PubMed  CAS  Google Scholar 

  87. Sidorenkov I et al (1998) Crucial role of the RNA:DNA hybrid in the processivity of transcription. Mol Cell 2:55–64

    PubMed  CAS  Google Scholar 

  88. Epshtein V et al (2010) An allosteric mechanism of Rho-dependent transcription termination. Nature 463:245–249

    PubMed  CAS  Google Scholar 

  89. Nickels BE, Hochschild A (2004) Regulation of RNA polymerase through the secondary channel. Cell 118:281–284

    PubMed  CAS  Google Scholar 

  90. Furman R et al (2012) Transcription initiation factor DksA has diverse effects on RNA chain elongation. Nucleic Acids Res 40:3392–3402

    PubMed  CAS  Google Scholar 

  91. Rutherford ST et al (2007) Effects of DksA, GreA, and GreB on transcription initiation: insights into the mechanisms of factors that bind in the secondary channel of RNA polymerase. J Mol Biol 366:1243–1257

    PubMed  CAS  Google Scholar 

  92. Rutherford ST et al (2009) Allosteric control of Escherichia coli rRNA promoter complexes by DksA. Genes Dev 23:236–248

    PubMed  CAS  Google Scholar 

  93. Sosunova E et al (2003) Donation of catalytic residues to RNA polymerase active center by transcription factor Gre. Proc Natl Acad Sci USA 100:15469–15474

    PubMed  CAS  Google Scholar 

  94. Hsu LH et al (1995) Escherichia coli transcript cleavage factors GreA and GreB stimulate promoter escape and gene expression in vivo and in vitro. Proc Natl Acad Sci USA 92:11588–11592

    PubMed  CAS  Google Scholar 

  95. Sevostyanova A et al (2011) The beta subunit gate loop is required for RNA polymerase modification by RfaH and NusG. Mol Cell 43:253–262

    PubMed  CAS  Google Scholar 

  96. Weixlbaumer A et al (2013) Structural basis of transcriptional pausing in bacteria. Cell 152:431–441

    PubMed  CAS  Google Scholar 

  97. Roberts J, Park JS (2004) Mfd, the bacterial transcription repair coupling factor: translocation, repair and termination. Curr Opin Microbiol 7:120–125

    PubMed  CAS  Google Scholar 

  98. Trautinger BW et al (2005) RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. Mol Cell 19:247–258

    PubMed  CAS  Google Scholar 

  99. Epshtein V, Nudler E (2003) Cooperation between RNA polymerase molecules in transcription elongation. Science 300:801–805

    PubMed  CAS  Google Scholar 

  100. Cohen SE et al (2010) Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli. Proc Natl Acad Sci USA 107:15517–15522

    PubMed  CAS  Google Scholar 

  101. Yang X, Lewis PJ (2010) The interaction between RNA polymerase and the elongation factor NusA. RNA Biol 7:272–275

    PubMed  CAS  Google Scholar 

  102. Heller RC, Marians KJ (2006) Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439:557–562

    PubMed  CAS  Google Scholar 

  103. Rupp WD, Howard-Flanders P (1968) Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31:291–304

    PubMed  CAS  Google Scholar 

  104. Cohen SE et al (2009) Transcriptional modulator NusA interacts with translesion DNA polymerases in Escherichia coli. J Bacteriol 191:665–672

    PubMed  CAS  Google Scholar 

  105. Butland G et al (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:531–537

    PubMed  CAS  Google Scholar 

  106. Mah TF et al (2000) The alpha subunit of E. coli RNA polymerase activates RNA binding by NusA. Genes Dev 14:2664–2675

    PubMed  CAS  Google Scholar 

  107. Shankar S et al (2007) A transcription antiterminator constructs a NusA-dependent shield to the emerging transcript. Mol Cell 27:914–927

    PubMed  CAS  Google Scholar 

  108. Yang X et al (2009) The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA. EMBO Rep 10:997–1002

    PubMed  CAS  Google Scholar 

  109. Opalka N et al (2010) Complete structural model of Escherichia coli RNA polymerase from a hybrid approach. PLoS Biol 8:e1000483

    PubMed  Google Scholar 

  110. Xu G et al (2008) Base excision repair, aging and health span. Mech Ageing Dev 129:366–382

    PubMed  CAS  Google Scholar 

  111. Doetsch PW (2002) Translesion synthesis by RNA polymerases: occurrence and biological implications for transcriptional mutagenesis. Mutat Res 510:131–140

    PubMed  CAS  Google Scholar 

  112. Donahue BA et al (1994) Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc Natl Acad Sci USA 91:8502–8506

    PubMed  CAS  Google Scholar 

  113. Walmacq C et al (2012) Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage. Mol Cell 46:18–29

    PubMed  CAS  Google Scholar 

  114. Kuraoka I et al (2003) Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis. J Biol Chem 278:7294–7299

    PubMed  CAS  Google Scholar 

  115. Charlet-Berguerand N et al (2006) RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors. EMBO J 25:5481–5491

    PubMed  CAS  Google Scholar 

  116. Bregeon D, Doetsch PW (2011) Transcriptional mutagenesis: causes and involvement in tumour development. Nat Rev Cancer 11:218–227

    PubMed  CAS  Google Scholar 

  117. Damsma GE, Cramer P (2009) Molecular basis of transcriptional mutagenesis at 8-oxoguanine. J Biol Chem 284:31658–31663

    PubMed  CAS  Google Scholar 

  118. Ross C et al (2006) Novel role of mfd: effects on stationary-phase mutagenesis in Bacillus subtilis. J Bacteriol 188:7512–7520

    PubMed  CAS  Google Scholar 

  119. Robleto EA et al (2012) Mfd and transcriptional derepression cause genetic diversity in Bacillus subtilis. Front Biosci (Elite Ed) 4:1246–1254

    Google Scholar 

  120. Han J et al (2008) Key role of Mfd in the development of fluoroquinolone resistance in Campylobacter jejuni. PLoS Pathog 4:e1000083

    PubMed  Google Scholar 

  121. Pomerantz RT, O’Donnell M (2010) Direct restart of a replication fork stalled by a head-on RNA polymerase. Science 327:590–592

    PubMed  CAS  Google Scholar 

  122. Martin HA et al (2011) Transcriptional de-repression and Mfd are mutagenic in stressed Bacillus subtilis cells. J Mol Microbiol Biotechnol 21:45–58

    PubMed  CAS  Google Scholar 

  123. Parkhill J et al (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668

    PubMed  CAS  Google Scholar 

  124. Saxowsky TT et al (2008) 8-Oxoguanine-mediated transcriptional mutagenesis causes Ras activation in mammalian cells. Proc Natl Acad Sci USA 105:18877–18882

    PubMed  CAS  Google Scholar 

  125. Bregeon D et al (2009) Transcriptional mutagenesis induced by 8-oxoguanine in mammalian cells. PLoS Genet 5:e1000577

    PubMed  Google Scholar 

  126. Maynard S et al (2009) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30:2–10

    PubMed  CAS  Google Scholar 

  127. El-Agnaf OM et al (1998) Aggregates from mutant and wild-type alpha-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of beta-sheet and amyloid-like filaments. FEBS Lett 440:71–75

    PubMed  CAS  Google Scholar 

  128. van Leeuwen FW, Hol EM (1999) Molecular misreading of genes in Down syndrome as a model for the Alzheimer type of neurodegeneration. J Neural Transm Suppl 57:137–159

    PubMed  Google Scholar 

  129. Pakotiprapha D et al (2012) Structure and mechanism of the UvrA-UvrB DNA damage sensor. Nat Struct Mol Biol 19:291–298

    PubMed  CAS  Google Scholar 

  130. Pakotiprapha D, Jeruzalmi D (2013) Small-angle X-ray scattering reveals architecture and A(2)B(2) stoichiometry of the UvrA-UvrB DNA damage sensor. Proteins 81:132–139

    PubMed  CAS  Google Scholar 

  131. Verhoeven EE et al (2002) The presence of two UvrB subunits in the UvrAB complex ensures damage detection in both DNA strands. EMBO J 21:4196–4205

    PubMed  CAS  Google Scholar 

  132. Pakotiprapha D et al (2009) A structural model for the damage-sensing complex in bacterial nucleotide excision repair. J Biol Chem 284:12837–12844

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. N. Grigorieff and the Damon Runyon Cancer Research Foundation (DRG-1966-08) for support, Dr. Peter Lewis for the coordinates of the NusA-TEC model, and Dr. R. Edayathumangalam for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra M. Deaconescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deaconescu, A.M. RNA polymerase between lesion bypass and DNA repair. Cell. Mol. Life Sci. 70, 4495–4509 (2013). https://doi.org/10.1007/s00018-013-1384-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1384-3

Keywords

Navigation