Skip to main content
Log in

Structural mechanisms of the agrin–LRP4–MuSK signaling pathway in neuromuscular junction differentiation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The neuromuscular junction (NMJ) is the most extensively studied model of neuronal synaptogenesis. Acetylcholine receptor (AChR) clustering on the postsynaptic membrane is a cardinal event in the differentiation of NMJs. AChR clustering and postsynaptic differentiation is orchestrated by sophisticated interactions among three proteins: the neuron-secreted proteoglycan agrin, the co-receptor LRP4, and the muscle-specific receptor tyrosine kinase MuSK. LRP4 and MuSK act as scaffolds for multiple binding partners, resulting in a complex and dynamic network of interacting proteins that is required for AChR clustering. In this review, we discuss the structural basis for NMJ postsynaptic differentiation mediated by the agrin–LRP4–MuSK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AChR:

Acetylcholine receptor

Fz-CRD:

Frizzled cysteine-rich domain

Ig-like:

Immunoglobulin-like

LG:

Laminin globular

LRP4:

Low-density lipoprotein receptor-related protein 4

MuSK:

Muscle-specific kinase

NMJ:

Neuromuscular junction

NtA:

N-terminal agrin

PH:

Pleckstrin homology

PTB:

Phosphotyrosine binding

RTK:

Receptor tyrosine kinase

Tid1:

Tumorous imaginal disc 1

References

  1. Slater CR (2008) Reliability of neuromuscular transmission and how it is maintained. Handb Clin Neurol 91:27–101

    Article  PubMed  Google Scholar 

  2. Madhavan R, Peng HB (2005) Molecular regulation of postsynaptic differentiation at the neuromuscular junction. IUBMB Life 57:719–730

    Article  PubMed  CAS  Google Scholar 

  3. Sanes JR, Lichtman JW (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2:791–805

    Article  PubMed  CAS  Google Scholar 

  4. Fertuck HC, Salpeter MM (1976) Quantitation of junctional and extrajunctional acetylcholine receptors by electron microscope autoradiography after 125I-alpha-bungarotoxin binding at mouse neuromuscular junctions. J Cell Biol 69:144–158

    Article  PubMed  CAS  Google Scholar 

  5. Burden SJ (2002) Building the vertebrate neuromuscular synapse. J Neurobiol 53:501–511

    Article  PubMed  CAS  Google Scholar 

  6. Ferraro E, Molinari F, Berghella L (2012) Molecular control of neuromuscular junction development. J Cachexia Sarcopenia Muscle 3:13–23

    Article  PubMed  Google Scholar 

  7. Wu H, Xiong WC, Mei L (2010) To build a synapse: signaling pathways in neuromuscular junction assembly. Development 137:1017–1033

    Article  PubMed  CAS  Google Scholar 

  8. Witzemann V (2006) Development of the neuromuscular junction. Cell Tissue Res 326:263–271

    Article  PubMed  Google Scholar 

  9. Ngo ST, Noakes PG, Phillips WD (2007) Neural agrin: a synaptic stabiliser. Int J Biochem Cell Biol 39:863–867

    Article  PubMed  CAS  Google Scholar 

  10. Sigoillot SM, Bourgeois F, Lambergeon M, Strochlic L, Legay C (2010) ColQ controls postsynaptic differentiation at the neuromuscular junction. J Neurosci 30:13–23

    Article  PubMed  CAS  Google Scholar 

  11. Amenta AR et al (2012) Biglycan is an extracellular MuSK binding protein important for synapse stability. J Neurosci 32:2324–2334

    Article  PubMed  CAS  Google Scholar 

  12. Singhal N, Martin PT (2011) Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Dev Neurobiol 71:982–1005

    Article  PubMed  CAS  Google Scholar 

  13. Ghazanfari N, Fernandez KJ, Murata Y, Morsch M, Ngo ST, Reddel SW, Noakes PG, Phillips WD (2011) Muscle specific kinase: organiser of synaptic membrane domains. Int J Biochem Cell Biol 43:295–298

    Article  PubMed  CAS  Google Scholar 

  14. Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC, Mei L (2008) LRP4 serves as a coreceptor of agrin. Neuron 60:285–297

    Article  PubMed  CAS  Google Scholar 

  15. Kim N et al (2008) Lrp4 is a receptor for agrin and forms a complex with MuSK. Cell 135:334–342

    Article  PubMed  CAS  Google Scholar 

  16. Weatherbee SD, Anderson KV, Niswander LA (2006) LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development 133:4993–5000

    Article  PubMed  CAS  Google Scholar 

  17. Song Y, Balice-Gordon R (2008) New dogs in the dogma: lrp4 and Tid1 in neuromuscular synapse formation. Neuron 60:526–528

    Article  PubMed  CAS  Google Scholar 

  18. Antolik C, Catino DH, Resneck WG, Bloch RJ (2006) The tetratricopeptide repeat domains of rapsyn bind directly to cytoplasmic sequences of the muscle-specific kinase. Neuroscience 141:87–100

    Article  PubMed  CAS  Google Scholar 

  19. McMahan UJ (1990) The agrin hypothesis. Cold Spring Harb Symp Quant Biol 55:407–418

    Article  PubMed  CAS  Google Scholar 

  20. Nitkin RM, Smith MA, Magill C, Fallon JR, Yao YM, Wallace BG, McMahan UJ (1987) Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J Cell Biol 105:2471–2478

    Article  PubMed  CAS  Google Scholar 

  21. Bezakova G, Ruegg MA (2003) New insights into the roles of agrin. Nat Rev Mol Cell Biol 4:295–308

    Article  PubMed  CAS  Google Scholar 

  22. Ferns MJ, Campanelli JT, Hoch W, Scheller RH, Hall Z (1993) The ability of agrin to cluster AChRs depends on alternative splicing and on cell surface proteoglycans. Neuron 11:491–502

    Article  PubMed  CAS  Google Scholar 

  23. Hoch W, Campanelli JT, Scheller RH (1994) Structural domains of agrin required for clustering of nicotinic acetylcholine receptors. EMBO J 13:2814–2821

    PubMed  CAS  Google Scholar 

  24. McMahan UJ, Horton SE, Werle MJ, Honig LS, Kroger S, Ruegg MA, Escher G (1992) Agrin isoforms and their role in synaptogenesis. Curr Opin Cell Biol 4:869–874

    Article  PubMed  CAS  Google Scholar 

  25. Cohen NA, Kaufmann WE, Worley PF, Rupp F (1997) Expression of agrin in the developing and adult rat brain. Neuroscience 76:581–596

    Article  PubMed  CAS  Google Scholar 

  26. Kroger S, Mann S (1996) Biochemical and functional characterization of basal lamina-bound agrin in the chick central nervous system. Eur J Neurosci 8:500–509

    Article  PubMed  CAS  Google Scholar 

  27. Ksiazek I et al (2007) Synapse loss in cortex of agrin-deficient mice after genetic rescue of perinatal death. J Neurosci 27:7183–7195

    Article  PubMed  CAS  Google Scholar 

  28. McFarlane AA, Stetefeld J (2009) An interdomain disulfide bridge links the NtA and first FS domain in agrin. Protein Sci 18:2421–2428

    Article  PubMed  CAS  Google Scholar 

  29. Mascarenhas JB, Ruegg MA, Sasaki T, Eble JA, Engel J, Stetefeld J (2005) Structure and laminin-binding specificity of the NtA domain expressed in eukaryotic cells. Matrix Biol 23:507–513

    Article  PubMed  CAS  Google Scholar 

  30. Stetefeld J et al (2001) The laminin-binding domain of agrin is structurally related to N-TIMP-1. Nat Struct Biol 8:705–709

    Article  PubMed  CAS  Google Scholar 

  31. Caterina NC, Windsor LJ, Yermovsky AE, Bodden MK, Taylor KB, Birkedal-Hansen H, Engler JA (1997) Replacement of conserved cysteines in human tissue inhibitor of metalloproteinases-1. J Biol Chem 272:32141–32149

    Article  PubMed  CAS  Google Scholar 

  32. Huang W, Meng Q, Suzuki K, Nagase H, Brew K (1997) Mutational study of the amino-terminal domain of human tissue inhibitor of metalloproteinases 1 (TIMP-1) locates an inhibitory region for matrix metalloproteinases. J Biol Chem 272:22086–22091

    Article  PubMed  CAS  Google Scholar 

  33. Mascarenhas JB, Ruegg MA, Winzen U, Halfter W, Engel J, Stetefeld J (2003) Mapping of the laminin-binding site of the N-terminal agrin domain (NtA). EMBO J 22:529–536

    Article  PubMed  CAS  Google Scholar 

  34. Cornish T, Chi J, Johnson S, Lu Y, Campanelli JT (1999) Globular domains of agrin are functional units that collaborate to induce acetylcholine receptor clustering. J Cell Sci 112(Pt 8):1213–1223

    PubMed  CAS  Google Scholar 

  35. Gesemann M, Denzer AJ, Ruegg MA (1995) Acetylcholine receptor-aggregating activity of agrin isoforms and mapping of the active site. J Cell Biol 128:625–636

    Article  PubMed  CAS  Google Scholar 

  36. Tseng CN, Zhang L, Wu SL, Wang WF, Wang ZZ, Cascio M (2010) Asparagine of z8 insert is critical for the affinity, conformation, and acetylcholine receptor-clustering activity of neural agrin. J Biol Chem 285:27641–27651

    Article  PubMed  CAS  Google Scholar 

  37. Tseng CN, Zhang L, Cascio M, Wang ZZ (2003) Calcium plays a critical role in determining the acetylcholine receptor-clustering activities of alternatively spliced isoforms of Agrin. J Biol Chem 278:17236–17245

    Article  PubMed  CAS  Google Scholar 

  38. Tidow H, Mattle D, Nissen P (2011) Structural and biophysical characterisation of agrin laminin G3 domain constructs. Protein Eng Des Sel 24:219–224

    Article  PubMed  CAS  Google Scholar 

  39. Stetefeld J et al (2004) Modulation of agrin function by alternative splicing and Ca2+ binding. Structure 12:503–515

    Article  PubMed  CAS  Google Scholar 

  40. Rudenko G, Hohenester E, Muller YA (2001) LG/LNS domains: multiple functions—one business end? Trends Biochem Sci 26:363–368

    Article  PubMed  CAS  Google Scholar 

  41. Godfrey EW, Roe J, Heathcote RD (2000) Agrin fragments differentially induce ectopic aggregation of acetylcholine receptors in myotomal muscles of Xenopus embryos. J Neurobiol 44:436–445

    Article  PubMed  CAS  Google Scholar 

  42. Ruegg MA, Tsim KW, Horton SE, Kroger S, Escher G, Gensch EM, McMahan UJ (1992) The agrin gene codes for a family of basal lamina proteins that differ in function and distribution. Neuron 8:691–699

    Article  PubMed  CAS  Google Scholar 

  43. Timpl R, Tisi D, Talts JF, Andac Z, Sasaki T, Hohenester E (2000) Structure and function of laminin LG modules. Matrix Biol 19:309–317

    Article  PubMed  CAS  Google Scholar 

  44. O’Toole JJ, Deyst KA, Bowe MA, Nastuk MA, McKechnie BA, Fallon JR (1996) Alternative splicing of agrin regulates its binding to heparin alpha-dystroglycan, and the cell surface. Proc Natl Acad Sci USA 93:7369–7374

    Article  PubMed  Google Scholar 

  45. Campanelli JT, Gayer GG, Scheller RH (1996) Alternative RNA splicing that determines agrin activity regulates binding to heparin and alpha-dystroglycan. Development 122:1663–1672

    PubMed  CAS  Google Scholar 

  46. Maselli RA et al (2011) LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (z-) agrin. Hum Genet 131(7):1123–1135

    Article  PubMed  CAS  Google Scholar 

  47. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134

    Article  PubMed  CAS  Google Scholar 

  48. Hopf C, Hoch W (1998) Dimerization of the muscle-specific kinase induces tyrosine phosphorylation of acetylcholine receptors and their aggregation on the surface of myotubes. J Biol Chem 273:6467–6473

    Article  PubMed  CAS  Google Scholar 

  49. Xie MH, Yuan J, Adams C, Gurney A (1997) Direct demonstration of MuSK involvement in acetylcholine receptor clustering through identification of agonist ScFv. Nat Biotechnol 15:768–771

    Article  PubMed  CAS  Google Scholar 

  50. Glass DJ et al (1996) Agrin acts via a MuSK receptor complex. Cell 85:513–523

    Article  PubMed  CAS  Google Scholar 

  51. DeChiara TM et al (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85:501–512

    Article  PubMed  CAS  Google Scholar 

  52. Till JH, Becerra M, Watty A, Lu Y, Ma Y, Neubert TA, Burden SJ, Hubbard SR (2002) Crystal structure of the MuSK tyrosine kinase: insights into receptor autoregulation. Structure 10:1187–1196

    Article  PubMed  CAS  Google Scholar 

  53. Johnson LN, Noble ME, Owen DJ (1996) Active and inactive protein kinases: structural basis for regulation. Cell 85:149–158

    Article  PubMed  CAS  Google Scholar 

  54. Songyang Z, Margolis B, Chaudhuri M, Shoelson SE, Cantley LC (1995) The phosphotyrosine interaction domain of SHC recognizes tyrosine-phosphorylated NPXY motif. J Biol Chem 270:14863–14866

    Article  PubMed  CAS  Google Scholar 

  55. Uhlik MT, Temple B, Bencharit S, Kimple AJ, Siderovski DP, Johnson GL (2005) Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J Mol Biol 345:1–20

    Article  PubMed  CAS  Google Scholar 

  56. Jones G, Moore C, Hashemolhosseini S, Brenner HR (1999) Constitutively active MuSK is clustered in the absence of agrin and induces ectopic postsynaptic-like membranes in skeletal muscle fibers. J Neurosci 19:3376–3383

    PubMed  CAS  Google Scholar 

  57. Yang X, Arber S, William C, Li L, Tanabe Y, Jessell TM, Birchmeier C, Burden SJ (2001) Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30:399–410

    Article  PubMed  CAS  Google Scholar 

  58. Lin W, Burgess RW, Dominguez B, Pfaff SL, Sanes JR, Lee KF (2001) Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410:1057–1064

    Article  PubMed  CAS  Google Scholar 

  59. Grassot J, Gouy M, Perriere G, Mouchiroud G (2006) Origin and molecular evolution of receptor tyrosine kinases with immunoglobulin-like domains. Mol Biol Evol 23:1232–1241

    Article  PubMed  CAS  Google Scholar 

  60. Zhou H, Glass DJ, Yancopoulos GD, Sanes JR (1999) Distinct domains of MuSK mediate its abilities to induce and to associate with postsynaptic specializations. J Cell Biol 146:1133–1146

    Article  PubMed  CAS  Google Scholar 

  61. Wang Q, Zhang B, Wang YE, Xiong WC, Mei L (2008) The Ig1/2 domain of MuSK binds to muscle surface and is involved in acetylcholine receptor clustering. Neurosignals 16:246–253

    Article  PubMed  CAS  Google Scholar 

  62. Stiegler AL, Burden SJ, Hubbard SR (2006) Crystal structure of the agrin-responsive immunoglobulin-like domains 1 and 2 of the receptor tyrosine kinase MuSK. J Mol Biol 364:424–433

    Article  PubMed  CAS  Google Scholar 

  63. Ultsch MH, Wiesmann C, Simmons LC, Henrich J, Yang M, Reilly D, Bass SH, de Vos AM (1999) Crystal structures of the neurotrophin-binding domain of TrkA, TrkB and TrkC. J Mol Biol 290:149–159

    Article  PubMed  CAS  Google Scholar 

  64. Jennings CG, Dyer SM, Burden SJ (1993) Muscle-specific trk-related receptor with a kringle domain defines a distinct class of receptor tyrosine kinases. Proc Natl Acad Sci USA 90:2895–2899

    Article  PubMed  CAS  Google Scholar 

  65. Masiakowski P, Yancopoulos GD (1998) The Wnt receptor CRD domain is also found in MuSK and related orphan receptor tyrosine kinases. Curr Biol 8:R407

    Article  PubMed  CAS  Google Scholar 

  66. Xu YK, Nusse R (1998) The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Curr Biol 8:R405–R406

    Article  PubMed  CAS  Google Scholar 

  67. Jing L, Lefebvre JL, Gordon LR, Granato M (2009) Wnt signals organize synaptic prepattern and axon guidance through the zebrafish unplugged/MuSK receptor. Neuron 61:721–733

    Article  PubMed  CAS  Google Scholar 

  68. Banerjee S, Gordon L, Donn TM, Berti C, Moens CB, Burden SJ, Granato M (2011) A novel role for MuSK and non-canonical Wnt signaling during segmental neural crest cell migration. Development 138:3287–3296

    Article  PubMed  CAS  Google Scholar 

  69. Strochlic L et al (2012) Wnt4 participates in the formation of vertebrate neuromuscular junction. PLoS One 7:e29976

    Article  PubMed  CAS  Google Scholar 

  70. Zhang B, Liang C, Bates R, Yin Y, Xiong WC, Mei L (2012) Wnt proteins regulate acetylcholine receptor clustering in muscle cells. Mol Brain 5:7

    Article  PubMed  CAS  Google Scholar 

  71. Stiegler AL, Burden SJ, Hubbard SR (2009) Crystal structure of the frizzled-like cysteine-rich domain of the receptor tyrosine kinase MuSK. J Mol Biol 393:1–9

    Article  PubMed  CAS  Google Scholar 

  72. Dann CE, Hsieh JC, Rattner A, Sharma D, Nathans J, Leahy DJ (2001) Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 412:86–90

    Article  PubMed  CAS  Google Scholar 

  73. Carron C, Pascal A, Djiane A, Boucaut JC, Shi DL, Umbhauer M (2003) Frizzled receptor dimerization is sufficient to activate the Wnt/beta-catenin pathway. J Cell Sci 116:2541–2550

    Article  PubMed  CAS  Google Scholar 

  74. Oishi I et al (2003) The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8:645–654

    Article  PubMed  CAS  Google Scholar 

  75. Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC (2012) Structural basis of Wnt recognition by Frizzled. Science 337:59–64

    Article  PubMed  CAS  Google Scholar 

  76. May P, Woldt E, Matz RL, Boucher P (2007) The LDL receptor-related protein (LRP) family: an old family of proteins with new physiological functions. Ann Med 39:219–228

    Article  PubMed  CAS  Google Scholar 

  77. Hussain MM (2001) Structural, biochemical and signaling properties of the low-density lipoprotein receptor gene family. Front Biosci 6:D417–D428

    Article  PubMed  CAS  Google Scholar 

  78. Go GW, Mani A (2012) Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med 85:19–28

    PubMed  CAS  Google Scholar 

  79. Willnow TE, Nykjaer A, Herz J (1999) Lipoprotein receptors: new roles for ancient proteins. Nat Cell Biol 1:E157–E162

    Article  PubMed  CAS  Google Scholar 

  80. Simon-Chazottes D, Tutois S, Kuehn M, Evans M, Bourgade F, Cook S, Davisson MT, Guenet JL (2006) Mutations in the gene encoding the low-density lipoprotein receptor LRP4 cause abnormal limb development in the mouse. Genomics 87:673–677

    Article  PubMed  CAS  Google Scholar 

  81. Johnson EB, Steffen DJ, Lynch KW, Herz J (2006) Defective splicing of Megf7/Lrp4, a regulator of distal limb development, in autosomal recessive mulefoot disease. Genomics 88:600–609

    Article  PubMed  CAS  Google Scholar 

  82. Zong Y et al (2012) Structural basis of agrin-LRP4-MuSK signaling. Genes Dev 26:247–258

    Article  PubMed  CAS  Google Scholar 

  83. Bourhis E et al (2011) Wnt antagonists bind through a short peptide to the first beta-propeller domain of LRP5/6. Structure 19:1433–1442

    Article  PubMed  CAS  Google Scholar 

  84. Takagi J, Yang Y, Liu JH, Wang JH, Springer TA (2003) Complex between nidogen and laminin fragments reveals a paradigmatic beta-propeller interface. Nature 424:969–974

    Article  PubMed  CAS  Google Scholar 

  85. Choi HY, Dieckmann M, Herz J, Niemeier A (2009) Lrp4, a novel receptor for Dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS One 4:e7930

    Article  PubMed  CAS  Google Scholar 

  86. Leupin O et al (2011) Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem 286:19489–19500

    Article  PubMed  CAS  Google Scholar 

  87. Zhang W, Coldefy AS, Hubbard SR, Burden SJ (2011) Agrin binds to the N-terminal region of Lrp4 protein and stimulates association between Lrp4 and the first immunoglobulin-like domain in muscle-specific kinase (MuSK). J Biol Chem 286:40624–40630

    Article  PubMed  CAS  Google Scholar 

  88. Gomez AM, Burden SJ (2011) The extracellular region of Lrp4 is sufficient to mediate neuromuscular synapse formation. Dev Dyn 240:2626–2633

    Article  PubMed  CAS  Google Scholar 

  89. Cai D, Dhe-Paganon S, Melendez PA, Lee J, Shoelson SE (2003) Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J Biol Chem 278:25323–25330

    Article  PubMed  CAS  Google Scholar 

  90. Mashima R, Hishida Y, Tezuka T, Yamanashi Y (2009) The roles of Dok family adapters in immunoreceptor signaling. Immunol Rev 232:273–285

    Article  PubMed  CAS  Google Scholar 

  91. Inoue A, Setoguchi K, Matsubara Y, Okada K, Sato N, Iwakura Y, Higuchi O, Yamanashi Y (2009) Dok-7 activates the muscle receptor kinase MuSK and shapes synapse formation. Sci Signal 2(59):ra7

    Article  PubMed  Google Scholar 

  92. Okada K et al (2006) The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science 312:1802–1805

    Article  PubMed  CAS  Google Scholar 

  93. Hamuro J et al (2008) Mutations causing DOK7 congenital myasthenia ablate functional motifs in Dok-7. J Biol Chem 283:5518–5524

    Article  PubMed  CAS  Google Scholar 

  94. Beeson D et al (2006) Dok-7 mutations underlie a neuromuscular junction synaptopathy. Science 313:1975–1978

    Article  PubMed  CAS  Google Scholar 

  95. Bergamin E, Hallock PT, Burden SJ, Hubbard SR (2010) The cytoplasmic adaptor protein Dok7 activates the receptor tyrosine kinase MuSK via dimerization. Mol Cell 39:100–109

    Article  PubMed  CAS  Google Scholar 

  96. Dhe-Paganon S, Ottinger EA, Nolte RT, Eck MJ, Shoelson SE (1999) Crystal structure of the pleckstrin homology-phosphotyrosine binding (PH-PTB) targeting region of insulin receptor substrate 1. Proc Natl Acad Sci USA 96:8378–8383

    Article  PubMed  CAS  Google Scholar 

  97. Linnoila J, Wang Y, Yao Y, Wang ZZ (2008) A mammalian homolog of Drosophila tumorous imaginal discs, Tid1, mediates agrin signaling at the neuromuscular junction. Neuron 60:625–641

    Article  PubMed  CAS  Google Scholar 

  98. Gaestel M (2006) Molecular chaperones in signal transduction. Handb Exp Pharmacol 172:93–109

    Article  PubMed  CAS  Google Scholar 

  99. Lu B, Garrido N, Spelbrink JN, Suzuki CK (2006) Tid1 isoforms are mitochondrial DnaJ-like chaperones with unique carboxyl termini that determine cytosolic fate. J Biol Chem 281:13150–13158

    Article  PubMed  CAS  Google Scholar 

  100. Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63:2560–2570

    Article  PubMed  CAS  Google Scholar 

  101. Hennessy F, Boshoff A, Blatch GL (2005) Rational mutagenesis of a 40 kDa heat shock protein from Agrobacterium tumefaciens identifies amino acid residues critical to its in vivo function. Int J Biochem Cell Biol 37:177–191

    Article  PubMed  CAS  Google Scholar 

  102. Tsai J, Douglas MG (1996) A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding. J Biol Chem 271:9347–9354

    Article  PubMed  CAS  Google Scholar 

  103. Syken J, De-Medina T, Munger K (1999) TID1, a human homolog of the Drosophila tumor suppressor l(2)tid, encodes two mitochondrial modulators of apoptosis with opposing functions. Proc Natl Acad Sci USA 96:8499–8504

    Article  PubMed  CAS  Google Scholar 

  104. Lee Y, Rudell J, Ferns M (2009) Rapsyn interacts with the muscle acetylcholine receptor via alpha-helical domains in the alpha, beta, and epsilon subunit intracellular loops. Neuroscience 163:222–232

    Article  PubMed  CAS  Google Scholar 

  105. Moransard M, Borges LS, Willmann R, Marangi PA, Brenner HR, Ferns MJ, Fuhrer C (2003) Agrin regulates rapsyn interaction with surface acetylcholine receptors, and this underlies cytoskeletal anchoring and clustering. J Biol Chem 278:7350–7359

    Article  PubMed  CAS  Google Scholar 

  106. Ramarao MK, Bianchetta MJ, Lanken J, Cohen JB (2001) Role of rapsyn tetratricopeptide repeat and coiled-coil domains in self-association and nicotinic acetylcholine receptor clustering. J Biol Chem 276:7475–7483

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to our colleagues whose work could not be individually cited due to space limitations. R.J. acknowledges support from the Alfred P. Sloan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongsheng Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zong, Y., Jin, R. Structural mechanisms of the agrin–LRP4–MuSK signaling pathway in neuromuscular junction differentiation. Cell. Mol. Life Sci. 70, 3077–3088 (2013). https://doi.org/10.1007/s00018-012-1209-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1209-9

Keywords

Navigation