Skip to main content

Advertisement

Log in

Replacement of huntingtin exon 1 by trans-splicing

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is an autosomal-dominant neurodegenerative disorder caused by polyglutamine expansion in the amino-terminus of huntingtin (HTT). HD offers unique opportunities for promising RNA-based therapeutic approaches aimed at reducing mutant HTT expression, since the HD mutation is considered to be a “gain-of-function” mutation. Allele-specific strategies that preserve expression from the wild-type allele and reduce the levels of mutant protein would be of particular interest. Here, we have conducted proof-of-concept studies to demonstrate that spliceosome-mediated trans-splicing is a viable molecular strategy to specifically repair the HTT allele. We employed a dual plasmid transfection system consisting of a pre-mRNA trans-splicing module (PTM) containing HTT exon 1 and a HTT minigene to demonstrate that HTT exon 1 can be replaced in trans. We detected the presence of the trans-spliced RNA in which PTM exon 1 was correctly joined to minigene exons 2 and 3. Furthermore, exon 1 from the PTM was trans-spliced to the endogenous HTT pre-mRNA in cultured cells as well as disease-relevant models, including HD patient fibroblasts and primary neurons from a previously described HD mouse model. These results suggest that the repeat expansion of HTT can be repaired successfully not only in the context of synthetic minigenes but also within the context of HD neurons. Therefore, pre-mRNA trans-splicing may be a promising approach for the treatment of HD and other dominant genetic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    Article  PubMed  CAS  Google Scholar 

  2. Nasir J, Floresco SB, O’Kusky JR, Diewert VM, Richman JM, Zeisler J, Borowski A, Marth JD, Phillips AG, Hayden MR (1995) Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81:811–823

    Article  PubMed  CAS  Google Scholar 

  3. Zeitlin S, Liu JP, Chapman DL, Papaioannou VE, Efstratiadis A (1995) Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat Genet 11:155–163

    Article  PubMed  CAS  Google Scholar 

  4. Duyao MP, Auerbach AB, Ryan A, Persichetti F, Barnes GT, McNeil SM, Ge P, Vonsattel JP, Gusella JF, Joyner AL et al (1995) Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science 269:407–410

    Article  PubMed  CAS  Google Scholar 

  5. MacDonald ME (2003) Huntingtin: alive and well and working in middle management. Sci STKE 207:pe48

    Google Scholar 

  6. Li SH, Li XJ (2004) Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends Genet 20:146–154

    Article  PubMed  Google Scholar 

  7. Ferrante RJ, Gutekunst CA, Persichetti F, McNeil SM, Kowall NW, Gusella JF, MacDonald ME, Beal MF, Hersch SM (1997) Heterogeneous topographic and cellular distribution of huntingtin expression in the normal human neostriatum. J Neurosci 17:3052–3063

    PubMed  CAS  Google Scholar 

  8. Fusco FR, Chen Q, Lamoreaux WJ, Figueredo-Cardenas G, Jiao Y, Coffman JA, Surmeier DJ, Honig MG, Carlock LR, Reiner A (1999) Cellular localization of huntingtin in striatal and cortical neurons in rats: lack of correlation with neuronal vulnerability in Huntington’s disease. J Neurosci 19:1189–1202

    PubMed  CAS  Google Scholar 

  9. DiFiglia M, Sapp E, Chase K, Schwarz C, Meloni A, Young C, Martin E, Vonsattel JP, Carraway R, Reeves SA et al (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14:1075–1081

    Article  PubMed  CAS  Google Scholar 

  10. Velier J, Kim M, Schwarz C, Kim TW, Sapp E, Chase K, Aronin N, DiFiglia M (1998) Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Exp Neurol 152:34–40

    Article  PubMed  CAS  Google Scholar 

  11. Kegel KB, Meloni AR, Yi Y, Kim YJ, Doyle E, Cuiffo BG, Sapp E, Wang Y, Qin ZH, Chen JD, Nevins JR, Aronin N, DiFiglia M (2002) Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. J Biol Chem 277:7466–7476

    Article  PubMed  CAS  Google Scholar 

  12. Wexler NS, Lorimer J, Porter J, Gomez F, Moskowitz C, Shackell E, Marder K, Penchaszadeh G, Roberts SA, Gayan J, Brocklebank D, Cherny SS, Cardon LR, Gray J, Dlouhy SR, Wiktorski S, Hodes ME, Conneally PM, Penney JB, Gusella J, Cha JH, Irizarry M, Rosas D, Hersch S, Hollingsworth Z, MacDonald M, Young AB, Andresen JM, Housman DE, De Young MM, Bonilla E, Stillings T, Negrette A, Snodgrass SR, Martinez-Jaurrieta MD, Ramos-Arroyo MA, Bickham J, Ramos JS, Marshall F, Shoulson I, Rey GJ, Feigin A, Arnheim N, Acevedo-Cruz A, Acosta L, Alvir J, Fischbeck K, Thompson LM, Young A, Dure L, O’Brien CJ, Paulsen J, Brickman A, Krch D, Peery S, Hogarth P, Higgins DS Jr, Landwehrmeyer B (2004) Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci USA 101:3498–3503

    Article  PubMed  CAS  Google Scholar 

  13. Walker FO (2007) Huntington’s disease. Lancet 369:218–228

    Article  PubMed  CAS  Google Scholar 

  14. Cha JH (2000) Transcriptional dysregulation in Huntington’s disease. Trends Neurosci 23:387–392

    Article  PubMed  CAS  Google Scholar 

  15. Bates G, Benn C (2002) The polyglutamine diseases. In: Bates G, Harper P and Jones L (eds) Huntington’s disease, Oxford University Press, London, p 429–474

  16. Hickey MA, Chesselet MF (2003) Apoptosis in Huntington’s disease. Prog Neuropsychopharmacol Biol Psychiatry 27:255–265

    Article  PubMed  CAS  Google Scholar 

  17. DiProspero NA, Chen EY, Charles V, Plomann M, Kordower JH, Tagle DA (2004) Early changes in Huntington’s disease patient brains involve alterations in cytoskeletal and synaptic elements. J Neurocytol 33:517–533

    Article  PubMed  Google Scholar 

  18. Leoni V, Mariotti C, Tabrizi SJ, Valenza M, Wild EJ, Henley SM, Hobbs NZ, Mandelli ML, Grisoli M, Bjorkhem I, Cattaneo E, Di Donato S (2008) Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington’s disease. Brain 131:2851–2859

    Article  PubMed  Google Scholar 

  19. Duennwald ML, Lindquist S (2008) Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Genes Dev 22:3308–3319

    Article  PubMed  CAS  Google Scholar 

  20. Dragatsis I, Levine MS, Zeitlin S (2000) Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat Genet 26:300–306

    Article  PubMed  CAS  Google Scholar 

  21. Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, Friedlander RM, Silani V, Hayden MR, Timmusk T, Sipione S, Cattaneo E (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293:493–498

    Article  PubMed  CAS  Google Scholar 

  22. Puttaraju M, Jamison SF, Mansfield SG, Garcia-Blanco MA, Mitchell LG (1999) Spliceosome-mediated RNA trans-splicing as a tool for gene therapy. Nat Biotechnol 17:246–252

    Article  PubMed  CAS  Google Scholar 

  23. Mansfield SG, Kole J, Puttaraju M, Yang CC, Garcia-Blanco MA, Cohn JA, Mitchell LG (2000) Repair of CFTR mRNA by spliceosome-mediated RNA trans-splicing. Gene Ther 7:1885–1895

    Article  PubMed  CAS  Google Scholar 

  24. Kikumori T, Cote GJ, Gagel RF (2001) Promiscuity of pre-mRNA spliceosome-mediated trans splicing: a problem for gene therapy? Hum Gene Ther 12:1429–1441

    Article  PubMed  CAS  Google Scholar 

  25. Puttaraju M, DiPasquale J, Baker CC, Mitchell LG, Garcia-Blanco MA (2001) Messenger RNA repair and restoration of protein function by spliceosome-mediated RNA trans-splicing. Mol Ther 4:105–114

    Article  PubMed  CAS  Google Scholar 

  26. Labrador M, Corces VG (2003) Extensive exon reshuffling over evolutionary time coupled to trans-splicing in Drosophila. Genome Res 13:2220–2228

    Article  PubMed  CAS  Google Scholar 

  27. Flouriot G, Brand H, Seraphin B, Gannon F (2002) Natural trans-spliced mRNAs are generated from the human estrogen receptor-alpha (hER alpha) gene. J Biol Chem 277:26244–26251

    Article  PubMed  CAS  Google Scholar 

  28. Dorn R, Krauss V (2003) The modifier of mdg4 locus in Drosophila: functional complexity is resolved by trans splicing. Genetica 117:165–177

    Article  PubMed  CAS  Google Scholar 

  29. Finta C, Zaphiropoulos PG (2002) Intergenic mRNA molecules resulting from trans-splicing. J Biol Chem 277:5882–5890

    Article  PubMed  CAS  Google Scholar 

  30. Caudevilla C, Serra D, Miliar A, Codony C, Asins G, Bach M, Hegardt FG (1998) Natural trans-splicing in carnitine octanoyltransferase pre-mRNAs in rat liver. Proc Natl Acad Sci USA 95:12185–12190

    Article  PubMed  CAS  Google Scholar 

  31. Bruzik JP, Maniatis T (1992) Spliced leader RNAs from lower eukaryotes are trans-spliced in mammalian cells. Nature 360:692–695

    Article  PubMed  CAS  Google Scholar 

  32. Li H, Wang J, Mor G, Sklar J (2008) A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 321:1357–1361

    Article  PubMed  CAS  Google Scholar 

  33. Rickman DS, Pflueger D, Moss B, VanDoren VE, Chen CX, de la Taille A, Kuefer R, Tewari AK, Setlur SR, Demichelis F, Rubin MA (2009) SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res 69:2734–2738

    Article  PubMed  CAS  Google Scholar 

  34. Coady TH, Baughan TD, Shababi M, Passini MA, Lorson CL (2008) Development of a single vector system that enhances trans-splicing of SMN2 transcripts. PLoS One 3:e3468

    Article  PubMed  Google Scholar 

  35. Gropp M, Itsykson P, Singer O, Ben-Hur T, Reinhartz E, Galun E, Reubinoff BE (2003) Stable genetic modification of human embryonic stem cells by lentiviral vectors. Mol Ther 7:281–287

    Article  PubMed  CAS  Google Scholar 

  36. DiFiglia M, Sena-Esteves M, Chase K, Sapp E, Pfister E, Sass M, Yoder J, Reeves P, Pandey RK, Rajeev KG, Manoharan M, Sah DW, Zamore PD, Aronin N (2007) Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci USA 104:17204–17209

    Article  PubMed  CAS  Google Scholar 

  37. McBride JL, Boudreau RL, Harper SQ, Staber PD, Monteys AM, Martins I, Gilmore BL, Burstein H, Peluso RW, Polisky B, Carter BJ, Davidson BL (2008) Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci USA 105:5868–5873

    Article  PubMed  CAS  Google Scholar 

  38. Drouet V, Perrin V, Hassig R, Dufour N, Auregan G, Alves S, Bonvento G, Brouillet E, Luthi-Carter R, Hantraye P, Deglon N (2009) Sustained effects of nonallele-specific Huntingtin silencing. Ann Neurol 65:276–285

    Article  PubMed  CAS  Google Scholar 

  39. Mochizuki H, Yasuda T, Mouradian MM (2008) Advances in gene therapy for movement disorders. Neurotherapeutics 5:260–269

    Article  PubMed  CAS  Google Scholar 

  40. Danos O (2008) AAV vectors for RNA-based modulation of gene expression. Gene Ther 15:864–869

    Article  PubMed  CAS  Google Scholar 

  41. Harper SQ (2009) Progress and challenges in RNA interference therapy for Huntington disease. Arch Neurol 66:933–938

    Article  PubMed  Google Scholar 

  42. Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, Oh R, Bissada N, Hossain SM, Yang YZ, Li XJ, Simpson EM, Gutekunst CA, Leavitt BR, Hayden MR (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 12:1555–1567

    Article  PubMed  CAS  Google Scholar 

  43. Wood M, Yin H, McClorey G (2007) Modulating the expression of disease genes with RNA-based therapy. PLoS Genet 3:e109

    Article  PubMed  Google Scholar 

  44. Boado RJ, Kazantsev A, Apostol BL, Thompson LM, Pardridge WM (2000) Antisense-mediated down-regulation of the human huntingtin gene. J Pharmacol Exp Ther 295:239–243

    PubMed  CAS  Google Scholar 

  45. Nellemann C, Abell K, Norremolle A, Lokkegaard T, Naver B, Ropke C, Rygaard J, Sorensen SA, Hasholt L (2000) Inhibition of Huntington synthesis by antisense oligodeoxynucleotides. Mol Cell Neurosci 16:313–323

    Article  PubMed  CAS  Google Scholar 

  46. Hu J, Matsui M, Gagnon KT, Schwartz JC, Gabillet S, Arar K, Wu J, Bezprozvanny I, Corey DR (2009) Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nat Biotechnol 27:478–484

    Article  PubMed  CAS  Google Scholar 

  47. Boudreau RL, McBride JL, Martins I, Shen S, Xing Y, Carter BJ, Davidson BL (2009) Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice. Mol Ther 17:1053–1063

    Article  PubMed  CAS  Google Scholar 

  48. White JK, Auerbach W, Duyao MP, Vonsattel JP, Gusella JF, Joyner AL, MacDonald ME (1997) Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nat Genet 17:404–410

    Article  PubMed  CAS  Google Scholar 

  49. Dietrich P, Shanmugasundaram R, Shuyu E, Dragatsis I (2009) Congenital hydrocephalus associated with abnormal subcommissural organ in mice lacking huntingtin in Wnt1 cell lineages. Hum Mol Genet 18:142–150

    Article  PubMed  CAS  Google Scholar 

  50. van Bilsen PH, Jaspers L, Lombardi MS, Odekerken JC, Burright EN, Kaemmerer WF (2008) Identification and allele-specific silencing of the mutant huntingtin allele in Huntington’s disease patient-derived fibroblasts. Hum Gene Ther 19:710–719

    Article  PubMed  Google Scholar 

  51. Schwarz DS, Ding H, Kennington L, Moore JT, Schelter J, Burchard J, Linsley PS, Aronin N, Xu Z, Zamore PD (2006) Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genet 2:e140

    Article  PubMed  Google Scholar 

  52. Zhang Y, Engelman J, Friedlander RM (2009) Allele-specific silencing of mutant Huntington’s disease gene. J Neurochem 108:82–90

    Article  PubMed  CAS  Google Scholar 

  53. Pfister EL, Kennington L, Straubhaar J, Wagh S, Liu W, DiFiglia M, Landwehrmeyer B, Vonsattel JP, Zamore PD, Aronin N (2009) Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington’s disease patients. Curr Biol 19:774–778

    Article  PubMed  CAS  Google Scholar 

  54. Warby SC, Doty CN, Graham RK, Shively J, Singaraja RR, Hayden MR (2009) Phosphorylation of huntingtin reduces the accumulation of its nuclear fragments. Mol Cell Neurosci 40:121–127

    Article  PubMed  CAS  Google Scholar 

  55. Carroll JB, Warby SC, Southwell AL, Doty CN, Greenlee S, Skotte N, Hung G, Bennett CF, Freier SM, Hayden MR (2011) Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene/allele-specific silencing of mutant huntingtin. Mol Ther 19:2178–2185

    Article  PubMed  CAS  Google Scholar 

  56. McBride JL, Pitzer MR, Boudreau RL, Dufour B, Hobbs T, Ojeda SR, Davidson BL (2011) Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington’s disease. Mol Ther 19:2152–2162

    Article  PubMed  CAS  Google Scholar 

  57. Lee SJ, Lim HS, Masliah E, Lee HJ (2011) Protein aggregate spreading in neurodegenerative diseases: problems and perspectives. Neurosci Res 70:339–348

    Article  PubMed  CAS  Google Scholar 

  58. Jucker M, Walker LC (2011) Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann Neurol 70:532–540

    Article  PubMed  CAS  Google Scholar 

  59. Ren PH, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR (2009) Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 11:219–225

    Article  PubMed  CAS  Google Scholar 

  60. Mitchell LG, McGarrity GJ (2005) Gene therapy progress and prospects: reprogramming gene expression by trans-splicing. Gene Ther 12:1477–1485

    Article  PubMed  CAS  Google Scholar 

  61. Sassone J, Colciago C, Cislaghi G, Silani V, Ciammola A (2009) Huntington’s disease: the current state of research with peripheral tissues. Exp Neurol 219:385–397

    Article  PubMed  CAS  Google Scholar 

  62. Morris DP, Greenleaf AL (2000) The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 275:39935–39943

    Article  PubMed  CAS  Google Scholar 

  63. Goldstrohm AC, Albrecht TR, Sune C, Bedford MT, Garcia-Blanco MA (2001) The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1. Mol Cell Biol 21:7617–7628

    Article  PubMed  CAS  Google Scholar 

  64. Liu X, Jiang Q, Mansfield SG, Puttaraju M, Zhang Y, Zhou W, Cohn JA, Garcia-Blanco MA, Mitchell LG, Engelhardt JF (2002) Partial correction of endogenous DeltaF508 CFTR in human cystic fibrosis airway epithelia by spliceosome-mediated RNA trans-splicing. Nat Biotechnol 20:47–52

    PubMed  CAS  Google Scholar 

  65. Liu X, Luo M, Zhang LN, Yan Z, Zak R, Ding W, Mansfield SG, Mitchell LG, Engelhardt JF (2005) Spliceosome-mediated RNA trans-splicing with recombinant adeno-associated virus partially restores cystic fibrosis transmembrane conductance regulator function to polarized human cystic fibrosis airway epithelial cells. Hum Gene Ther 16:1116–1123

    Article  PubMed  CAS  Google Scholar 

  66. Chao H, Mansfield SG, Bartel RC, Hiriyanna S, Mitchell LG, Garcia-Blanco MA, Walsh CE (2003) Phenotype correction of hemophilia A mice by spliceosome-mediated RNA trans-splicing. Nat Med 9:1015–1019

    Article  PubMed  CAS  Google Scholar 

  67. Nakayama K, Pergolizzi RG, Crystal RG (2005) Gene transfer-mediated pre-mRNA segmental trans-splicing as a strategy to deliver intracellular toxins for cancer therapy. Cancer Res 65:254–263

    PubMed  CAS  Google Scholar 

  68. Pergolizzi RG, Ropper AE, Dragos R, Reid AC, Nakayama K, Tan Y, Ehteshami JR, Coleman SH, Silver RB, Hackett NR, Menez A, Crystal RG (2003) In vivo trans-splicing of 5′ and 3′ segments of pre-mRNA directed by corresponding DNA sequences delivered by gene transfer. Mol Ther 8:999–1008

    Article  PubMed  CAS  Google Scholar 

  69. Tahara M, Pergolizzi RG, Kobayashi H, Krause A, Luettich K, Lesser ML, Crystal RG (2004) Trans-splicing repair of CD40 ligand deficiency results in naturally regulated correction of a mouse model of hyper-IgM X-linked immunodeficiency. Nat Med 10:835–841

    Article  PubMed  CAS  Google Scholar 

  70. Wally V, Klausegger A, Koller U, Lochmuller H, Krause S, Wiche G, Mitchell LG, Hintner H, Bauer JW (2008) 5′ trans-splicing repair of the PLEC1 gene. J Invest Dermatol 128:568–574

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Faculty Research grant from the University of Missouri College of Veterinary Medicine, the Huntington Disease Foundation of Canada, and the National Institutes of Health (1R21NS070072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian L. Lorson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2012_1083_MOESM1_ESM.pptx

Supplementary Fig. 1 Sequence of the trans-splicing product. The F2-R4 product shown in Fig. 3 was cloned and sequenced to confirm correct splicing. Exon junctions are indicated by the thick vertical bars. (PPTX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rindt, H., Yen, PF., Thebeau, C.N. et al. Replacement of huntingtin exon 1 by trans-splicing. Cell. Mol. Life Sci. 69, 4191–4204 (2012). https://doi.org/10.1007/s00018-012-1083-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1083-5

Keywords

Navigation