Skip to main content

Advertisement

Log in

Knowledge translation: airway epithelial cell migration and respiratory diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Airway epithelial cell migration is essential for lung development and growth, as well as the maintenance of respiratory tissue integrity. This vital cellular process is also important for the repair and regeneration of damaged airway epithelium. More importantly, several lung diseases characterized by aberrant tissue remodeling result from the improper repair of damaged respiratory tissue. Epithelial cell migration relies upon extracellular matrix molecules and is further regulated by numerous local, neuronal, and hormonal factors. Under inflammatory conditions, cell migration can also be stimulated by certain cytokines and chemokines. Many well-known environmental factors involved in the pathogenesis of chronic lung diseases (e.g., cigarette smoking, air pollution, alcohol intake, inflammation, viral and bacterial infections) can inhibit airway epithelial cell migration. Further investigation of cellular and molecular mechanisms of cell migration with advanced techniques may provide knowledge that is relevant to physiological and pathological conditions. These studies may eventually lead to the development of therapeutic interventions to improve lung repair and regeneration and to prevent aberrant remodeling in the lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Horwitz AR, Parsons JT (1999) Cell migration—movin’ on. Science 286:1102–1103

    Article  PubMed  CAS  Google Scholar 

  2. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369

    Article  PubMed  CAS  Google Scholar 

  3. Le Clainche C, Carlier MF (2008) Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev 88:489–513

    Article  PubMed  CAS  Google Scholar 

  4. Horwitz R, Webb D (2003) Cell migration. Curr Biol 13:R756–R759

    Article  PubMed  CAS  Google Scholar 

  5. Smilenov LB, Mikhailov A, Pelham RJ, Marcantonio EE, Gundersen GG (1999) Focal adhesion motility revealed in stationary fibroblasts. Science 286:1172–1174

    Article  PubMed  CAS  Google Scholar 

  6. Anderson KI, Wang YL, Small JV (1996) Coordination of protrusion and translocation of the keratocyte involves rolling of the cell body. J Cell Biol 134:1209–1218

    Article  PubMed  CAS  Google Scholar 

  7. Broussard JA, Webb DJ, Kaverina I (2008) Asymmetric focal adhesion disassembly in motile cells. Curr Opin Cell Biol 20:85–90

    Article  PubMed  CAS  Google Scholar 

  8. Kametani Y, Takeichi M (2007) Basal-to-apical cadherin flow at cell junctions. Nat Cell Biol 9:92–98

    Article  PubMed  CAS  Google Scholar 

  9. Poujade M, Grasland-Mongrain E, Hertzog A, Jouanneau J, Chavrier P, Ladoux B, Buguin A, Silberzan P (2007) Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad Sci USA 104:15988–15993

    Article  PubMed  CAS  Google Scholar 

  10. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457

    Article  PubMed  CAS  Google Scholar 

  11. Kaverina I, Krylyshkina O, Small JV (1999) Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J Cell Biol 146:1033–1044

    Article  PubMed  CAS  Google Scholar 

  12. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  13. Waterman-Storer CM, Salmon E (1999) Positive feedback interactions between microtubule and actin dynamics during cell motility. Curr Opin Cell Biol 11:61–67

    Article  PubMed  CAS  Google Scholar 

  14. Allen-Gipson DS, Wong J, Spurzem JR, Sisson JH, Wyatt TA (2006) Adenosine A2A receptors promote adenosine-stimulated wound healing in bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 290:L849–L855

    Article  PubMed  CAS  Google Scholar 

  15. Salathe M (2002) Effects of beta-agonists on airway epithelial cells. J Allergy Clin Immunol 110:S275–S281

    Article  PubMed  CAS  Google Scholar 

  16. Parker PJ, Murray-Rust J (2004) PKC at a glance. J Cell Sci 117:131–132

    Article  PubMed  CAS  Google Scholar 

  17. Kermorgant S, Zicha D, Parker PJ (2004) PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO J 23:3721–3734

    Article  PubMed  CAS  Google Scholar 

  18. Krueger JS, Keshamouni VG, Atanaskova N, Reddy KB (2001) Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene 20:4209–4218

    Article  PubMed  CAS  Google Scholar 

  19. Vicente-Manzanares M, Koach MA, Whitmore L, Lamers ML, Horwitz AF (2008) Segregation and activation of myosin IIB creates a rear in migrating cells. J Cell Biol 183:543–554

    Article  PubMed  CAS  Google Scholar 

  20. Coniglio SJ, Zavarella S, Symons MH (2008) Pak1 and Pak2 mediate tumor cell invasion through distinct signaling mechanisms. Mol Cell Biol 28:4162–4172

    Article  PubMed  CAS  Google Scholar 

  21. Yin J, Yu FS (2008) Rho kinases regulate corneal epithelial wound healing. Am J Physiol Cell Physiol 295:C378–C387

    Article  PubMed  CAS  Google Scholar 

  22. Pinner S, Sahai E (2008) PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE. Nat Cell Biol 10:127–137

    Article  PubMed  CAS  Google Scholar 

  23. Schaller M, Parsons JT (1994) Focal adhesion kinase and associated proteins. Curr Opin Cell Biol 6:705–710

    Article  PubMed  CAS  Google Scholar 

  24. Turner CE (1994) Paxillin: a cytoskeletal target for tyrosine kinases. Bioassay 16:47–52

    Article  CAS  Google Scholar 

  25. Wu DY, Goldberg DJ (1993) Regulated tyrosine phosphorylation at the tips of growth cone filopodia. J Cell Biol 123:653–664

    Article  PubMed  CAS  Google Scholar 

  26. Funamoto S, Milan K, Meili R, Firtel RA (2001) Role of phosphatidylinositol 3′ kinase and a downstream pleckstrin homology domain-containing protein in controlling chemotaxis in Dictyostelium. J Cell Biol 153:795–810

    Article  PubMed  CAS  Google Scholar 

  27. Meili R, Ellsworth C, Lee S, Reddy TB, Ma H, Firtel RA (1999) Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J 18:2092–2105

    Article  PubMed  CAS  Google Scholar 

  28. Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR (2000) Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287:1037–1040

    Article  PubMed  CAS  Google Scholar 

  29. Wang F, Herzmark P, Weiner OD, Srinivasan S, Servant G, Bourne HR (2002) Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat Cell Biol 4:513–518

    Article  PubMed  CAS  Google Scholar 

  30. Weiner OD (2002) Regulation of cell polarity during eukaryotic chemotaxis: the chemotactic compass. Curr Opin Cell Biol 14:196–202

    Article  PubMed  CAS  Google Scholar 

  31. Weiner OD, Neilsen PO, Prestwich GD, Kirschner MW, Cantley LC, Bourne HR (2002) A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat Cell Biol 4:509–513

    Article  PubMed  CAS  Google Scholar 

  32. Srinivasan S, Wang F, Glavas S, Ott A, Hofmann F, Aktories K, Kalman D, Bourne HR (2003) Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J Cell Biol 160:375–385

    Article  PubMed  CAS  Google Scholar 

  33. Stephens L, Milne L, Hawkins P (2008) Moving towards a better understanding of chemotaxis. Curr Biol 18:R485–R494

    Article  PubMed  CAS  Google Scholar 

  34. Denker SP, Barber DL (2002) Cell migration requires both ion translocation and cytoskeletal anchoring by the Na–H exchanger NHE1. J Cell Biol 159:1087–1096

    Article  PubMed  CAS  Google Scholar 

  35. Frantz C, Karydis A, Nalbant P, Hahn KM, Barber DL (2007) Positive feedback between Cdc42 activity and H+ efflux by the Na–H exchanger NHE1 for polarity of migrating cells. J Cell Biol 179:403–410

    Article  PubMed  CAS  Google Scholar 

  36. Stock C, Schwab A (2006) Role of the Na/H exchanger NHE1 in cell migration. Acta Physiol (Oxf) 187:149–157

    Article  CAS  Google Scholar 

  37. Wilhelm DL (1953) Regeneration of tracheal epithelium. J Pathol Bacteriol 5025:543–550

    Article  Google Scholar 

  38. McDowell EM, Becci PJ, Schurch W, Trump BF (1979) The respiratory epithelium. VII. Epidermoid metaplasia of hamster tracheal epithelium during regeneration following mechanical injury. J Natl Cancer Inst 62:995–1008

    PubMed  CAS  Google Scholar 

  39. Keenan KP, Combs JW, McDowell EM (1982) Regeneration of hamster tracheal epithelium after mechanical injury. I. Focal lesions: quantitative morphologic study of cell proliferation. Virchows Arch B Cell Pathol Incl Mol Pathol. 41:193–214

    Article  PubMed  CAS  Google Scholar 

  40. Keenan KP, Wilson TS, McDowell EM (1983) Regeneration of hamster tracheal epithelium after mechanical injury. IV. Histochemical, immunocytochemical and ultrastructural studies. Virchows Arch B Cell Pathol Incl Mol Pathol 43:213–240

    Article  PubMed  CAS  Google Scholar 

  41. Zahm JM, Pierrot D, Chevillard M, Puchelle E (1992) Dynamics of cell movement during the wound repair of human surface respiratory epithelium. Biorheology 29:459–465

    PubMed  CAS  Google Scholar 

  42. Zahm JM, Kaplan H, Herard AL, Doriot F, Pierrot D, Somelette P et al (1997) Cell migration and proliferation during the in vitro wound repair of the respiratory epithelium. Cell Motil Cytoskeleton 37:33–43

    Article  PubMed  CAS  Google Scholar 

  43. Erjefalt JS, Erjefalt I, Sundler F, Persson CGA (1995) In vivo restitution of airway epithelium. Cell Tissue Res 281:305–316

    Article  PubMed  CAS  Google Scholar 

  44. Coraux C, Martinella-Catusse C, Nawrocki-Raby B, Hajj R, Burlet H, Escotte S, Laplace V, Birembaut P, Puchelle E (2005) Differential expression of matrix metalloproteinases and interleukin-8 during regeneration of human airway epithelium in vivo. J Pathol 206(2):106–109

    Article  CAS  Google Scholar 

  45. Shimizu T, Nishihara M, Kawaguchi S, Sakakura Y (1994) Expression of phenotypic markers during regeneration of rat tracheal epithelium following mechanical injury. Am J Respir Cell Mol Biol 11:85–94

    Article  PubMed  CAS  Google Scholar 

  46. Zhu M, Tian D, Li J, Ma Y, Wang Y, Wu R (2007) Glycogen synthase kinase 3beta and beta-catenin are involved in the injury and repair of bronchial epithelial cells induced by scratching. Exp Mol Pathol 83:30–38

    Article  PubMed  CAS  Google Scholar 

  47. Yin J, Xu K, Zhang J, Kumar A, Yu FS (2007) Wound-induced ATP release and EGF receptor activation in epithelial cells. J Cell Sci 120:815–825

    Article  PubMed  CAS  Google Scholar 

  48. Wesley UV, Bove PF, Hristova M, McCarthy S, van der Vliet A (2007) Airway epithelial cell migration and wound repair by ATP-mediated activation of dual oxidase 1. J Biol Chem 282:3213–3220

    Article  PubMed  CAS  Google Scholar 

  49. Shoji S, Rickard KA, Ertl RF, Linder J, Rennard SI (1989) Lung fibroblasts produce chemotactic factors for bronchial epithelial cells. Am J Physiol 257:L71–L79

    PubMed  CAS  Google Scholar 

  50. Herard AL, Pierrot D, Hinnrasky J, Kaplan H, Sheppard D, Puchelle E, Zahm JM (1996) Fibronectin and its alpha 5 beta 1-integrin receptor are involved in the wound-repair process of airway epithelium. Am J Physiol 271:L726–L733

    PubMed  CAS  Google Scholar 

  51. Rickard KA, Taylor J, Rennard SI, Spurzem JR (1993) Migration of bovine bronchial epithelial cells to extracellular matrix components. Am J Respir Cell Mol Biol 8:63–68

    Article  PubMed  CAS  Google Scholar 

  52. Xiao H, Eves R, Yeh C, Kan W, Xu F, Mak AS, Liu M (2009) Phorbol ester-induced podosomes in normal human bronchial epithelial cells. J Cell Physiol 218:366–375

    Article  PubMed  CAS  Google Scholar 

  53. Rickard KA, Taylor J, Spurzem JR, Rennard SI (1992) Extracellular matrix and bronchial epithelial cell migration. Chest 101:17S–18S

    PubMed  CAS  Google Scholar 

  54. Legrand C, Gilles C, Zahm JM, Polette M, Buisson AC, Kaplan H et al (1999) Airway epithelial cell migration dynamics. MMP-9 role in cell-extracellular matrix remodeling. J Cell Biol 146:517–529

    Article  PubMed  CAS  Google Scholar 

  55. Atkinson JJ, Toennies HM, Holmbeck K, Senior RM (2007) Membrane type 1 matrix metalloproteinase is necessary for distal airway epithelial repair and keratinocyte growth factor receptor expression after acute injury. Am J Physiol Lung Cell Mol Physiol 293:L600–L610

    Article  PubMed  CAS  Google Scholar 

  56. Legrand C, Polette M, Tournier JM, de Bentzmann S, Huet E, Monteau M, Birembaut P (2001) uPA/plasmin system-mediated MMP-9 activation is implicated in bronchial epithelial cell migration. Exp Cell Res 264:326–336

    Article  PubMed  CAS  Google Scholar 

  57. Graness A, Chwieralski CE, Reinhold D, Thim L, Hoffmann W (2002) Protein kinase C and ERK activation are required for TFF-peptide-stimulated bronchial epithelial cell migration and tumor necrosis factor-alpha-induced interleukin-6 (IL-6) and IL-8 secretion. J Biol Chem 277:18440–18446

    Article  PubMed  CAS  Google Scholar 

  58. Wright NA (1998) Aspects of the biology of regeneration and repair in the human gastrointestinal tract. Philos Trans R Soc Lond B Biol Sci 353:925–933

    Article  PubMed  CAS  Google Scholar 

  59. Oertel M, Graness A, Thim L, Buhling F, Kalbacher H, Hoffmann W (2001) Trefoil factor family-peptides promote migration of human bronchial epithelial cells: synergistic effect with epidermal growth factor. Am J Respir Cell Mol Biol 25:418–424

    Article  PubMed  CAS  Google Scholar 

  60. Kim JS, McKinnis VS, White SR (1997) Migration of guinea pig airway epithelial cells in response to bombesin analogues. Am J Respir Cell Mol Biol 16:259–266

    Article  PubMed  CAS  Google Scholar 

  61. Kim JS, Rabe KF, Magnussen H, Green JM, White SR (1995) Migration and proliferation of guinea pig and human airway epithelial cells in response to tachykinins. Am J Physiol 269:L119–L126

    PubMed  CAS  Google Scholar 

  62. Kim JS, McKinnis VS, Adams K, White SR (1997) Proliferation and repair of guinea pig tracheal epithelium after neuropeptide depletion and injury in vivo. Am J Physiol 273:L1235–L1241

    PubMed  CAS  Google Scholar 

  63. Spurzem JR, Gupta J, Veys T, Kneifl KR, Rennard SI, Wyatt TA (2002) Activation of protein kinase a accelerates bovine bronchial epithelial cell migration. Am J Physiol Lung Cell Mol Physiol 282:L1108–L1116

    PubMed  CAS  Google Scholar 

  64. Pullar CE, Zhao M, Song B, Pu J, Reid B, Ghoghawala S, McCaig C, Isseroff RR (2007) Beta-adrenergic receptor agonists delay while antagonists accelerate epithelial wound healing: evidence of an endogenous adrenergic network within the corneal epithelium. J Cell Physiol 211:261–272

    Article  PubMed  CAS  Google Scholar 

  65. Kim JS, McKinnis VS, Nawrocki A, White SR (1998) Stimulation of migration and wound repair of guinea-pig airway epithelial cells in response to epidermal growth factor. Am J Respir Cell Mol Biol 18:66–74

    Article  PubMed  CAS  Google Scholar 

  66. White SR, Dorscheid DR, Rabe KF, Wojcik KR, Hamann KJ (1999) Role of very late adhesion integrins in mediating repair of human airway epithelial cell monolayers after mechanical injury. Am J Respir Cell Mol Biol 20:787–796

    Article  PubMed  CAS  Google Scholar 

  67. Shoji S, Ertl RF, Linder J, Koizumi S, Duckworth WC, Rennard SI (1990) Bronchial epithelial cells respond to insulin and insulin-like growth factor-I as a chemoattractant. Am J Respir Cell Mol Biol 2:553–557

    Article  PubMed  CAS  Google Scholar 

  68. Ito H, Rennard SI, Spurzem JR (1996) Mononuclear cell conditioned medium enhances bronchial epithelial cell migration but inhibits attachment to fibronectin. J Lab Clin Med 127:494–503

    Article  PubMed  CAS  Google Scholar 

  69. Wyatt TA, Ito H, Veys TJ, Spurzem JR (1997) Stimulation of protein kinase C activity by tumor necrosis factor-alpha in bovine bronchial epithelial cells. Am J Physiol 273:L1007–L1012

    PubMed  CAS  Google Scholar 

  70. Maille E, Trinh NT, Prive A, Bilodeau C, Bissonnette E, Grandvaux N, Brochiero E (2011) Regulation of normal and cystic fibrosis airway epithelial repair processes by TNF-alpha after injury. Am J Physiol Lung Cell Mol Physiol 301:L945–L955

    Article  PubMed  CAS  Google Scholar 

  71. White SR, Fischer BM, Marroquin BA, Stern R (2008) Interleukin-1beta mediates human airway epithelial cell migration via NF-kappaB. Am J Physiol Lung Cell Mol Physiol 295:L1018–L1027

    Article  PubMed  CAS  Google Scholar 

  72. Ahdieh M, Vandenbos T, Youakim A (2001) Lung epithelial barrier function and wound healing are decreased by IL-4 and IL-13 and enhanced by IFN-gamma. Am J Physiol Cell Physiol 281:C2029–C2038

    PubMed  CAS  Google Scholar 

  73. White SR, Martin LD, Abe MK, Marroquin BA, Stern R, Fu X (2009) Insulin receptor substrate-1/2 mediates IL-4-induced migration of human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 297:L164–L173

    Article  PubMed  CAS  Google Scholar 

  74. Kida H, Mucenski ML, Thitoff AR, Le Cras TD, Park KS, Ikegami M, Muller W, Whitsett JA (2008) GP130-STAT3 regulates epithelial cell migration and is required for repair of the bronchiolar epithelium. Am J Pathol 172:1542–1554

    Article  PubMed  CAS  Google Scholar 

  75. Shahabuddin S, Ji R, Wang P, Brailoiu E, Dun N, Yang Y, Aksoy MO, Kelsen SG (2006) CXCR3 chemokine receptor-induced chemotaxis in human airway epithelial cells: role of p38 MAPK and PI3K signaling pathways. Am J Physiol Cell Physiol 291:C34–C39

    Article  PubMed  CAS  Google Scholar 

  76. de Bentzmann S, Plotkowski C, Puchelle E (1996) Receptors in the Pseudomonas aeruginosa adherence to injured and repairing airway epithelium. Am J Respir Crit Care Med 154:S155–S162

    Article  PubMed  Google Scholar 

  77. de Bentzmann S, Roger P, Dupuit F, Bajolet-Laudinat O, Fuchey C, Plotkowski MC, Puchelle E (1996) Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells. Infect Immun 64:1582–1588

    PubMed  Google Scholar 

  78. Roger P, Puchelle E, Bajolet-Laudinat O, Tournier JM, Debordeaux C, Plotkowski MC, Cohen JH, Sheppard D, de Bentzmann S (1999) Fibronectin and alpha5beta1 integrin mediate binding of Pseudomonas aeruginosa to repairing airway epithelium. Eur Respir J 13:1301–1309

    PubMed  CAS  Google Scholar 

  79. de Bentzmann S, Polette M, Zahm JM, Hinnrasky J, Kileztky C, Bajolet O, Klossek JM, Filloux A, Lazdunski A, Puchelle E (2000) Pseudomonas aeruginosa virulence factors delay airway epithelial wound repair by altering the actin cytoskeleton and inducing over activation of epithelial matrix metalloproteinase-2. Lab Invest 80:209–219

    Article  PubMed  Google Scholar 

  80. Obiso RJ Jr, Azghani AO, Wilkins TD (1997) The Bacteroides fragilis toxin fragilysin disrupts the paracellular barrier of epithelial cells. Infect Immun 65:1431–1439

    PubMed  CAS  Google Scholar 

  81. Kazmierczak BI, Mostov K, Engel JN (2001) Interaction of bacterial pathogens with polarized epithelium. Annu Rev Microbiol 55:407–435

    Article  PubMed  CAS  Google Scholar 

  82. Herard AL, Zahm JM, Pierrot D, Hinnrasky J, Fuchey C, Puchelle E (1996) Epithelial barrier integrity during in vitro wound repair of the airway eithelium. Am J Respir Cell Mol Biol 15:624–632

    Article  PubMed  CAS  Google Scholar 

  83. Spurzem JR, Raz M, Ito H, Kelling C, Stine LC, Romberger DJ, Rennard SI (1995) Bovine herpesvirus-1 infection reduces bronchial epithelial cell migration to extracellular matrix proteins. Am J Physiol Lung Cell Mol Physiol 268:L214–L220

    CAS  Google Scholar 

  84. Thorley AJ, Tetley TD (2007) Pulmonary epithelium, cigarette smoke, and chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2:409–428

    PubMed  CAS  Google Scholar 

  85. Rennard SI, Togo S, Holz O (2006) Cigarette smoke inhibits alveolar repair: a mechanism for the development of emphysema. Proc Am Thorac Soc 3:703–708

    Article  PubMed  CAS  Google Scholar 

  86. Cantral DE, Sisson JH, Veys T, Rennard SI, Spurzem JR (1995) Effects of cigarette smoke extract on bovine bronchial epithelial cell attachment and migration. Am J Physiol 268:L723–L728

    PubMed  CAS  Google Scholar 

  87. Wang H, Liu X, Umino T, Skold CM, Zhu Y, Kohyama T, Spurzem JR, Romberger DJ, Rennard SI (2001) Cigarette smoke inhibits human bronchial epithelial cell repair processes. Am J Respir Cell Mol Biol 25:772–779

    Article  PubMed  CAS  Google Scholar 

  88. Nyunoya T, Monick MM, Klingelhutz AL, Glaser H, Cagley JR, Brown CO, Matsumoto E, Aykin-Burns N, Spitz DR, Oshima J, Hunninghake GW (2009) Cigarette smoke induces cellular senescence via Werner’s syndrome protein down-regulation. Am J Respir Crit Care Med 179:279–287

    Article  PubMed  CAS  Google Scholar 

  89. Das A, Bhattacharya A, Chakrabarti G (2009) Cigarette smoke extract induces disruption of structure and function of tubulin-microtubule in lung epithelium cells and in vitro. Chem Res Toxicol 22(3):446–459

    Article  PubMed  CAS  Google Scholar 

  90. Slager RE, Allen-Gipson DS, Sammut A, Heires A, DeVasure J, Von Essen S, Romberger DJ, Wyatt TA (2007) Hog barn dust slows airway epithelial cell migration in vitro through a PKCalpha-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 293:L1469–L1474

    Article  PubMed  CAS  Google Scholar 

  91. Romberger DJ, Bodlak V, Von Essen SG, Mathisen T, Wyatt TA (2002) Hog barn dust extract stimulates IL-8 and IL-6 release in human bronchial epithelial cells via PKC activation. J Appl Physiol 93:289–296

    PubMed  CAS  Google Scholar 

  92. Wyatt TA, Slager RE, Devasure J, Auvermann BW, Mulhern ML, Von Essen S, Mathisen T, Floreani AA, Romberger DJ (2007) Feedlot dust stimulation of interleukin-6 and -8 requires protein kinase Cepsilon in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 293:L1163–L1170

    Article  PubMed  CAS  Google Scholar 

  93. Olsen CE, Liguori AE, Zong Y, Lantz RC, Burgess JL, Boitano S (2008) Arsenic upregulates MMP-9 and inhibits wound repair in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 295:L293–L302

    Article  PubMed  CAS  Google Scholar 

  94. Nikula KJ, Wilson DW, Giri SN, Plopper CG, Dungworth DL (1988) The response of the rat tracheal epithelium to ozone exposure: injury, adaptation and repair. Am J Pathol 131:373–384

    PubMed  CAS  Google Scholar 

  95. Suadicani P, Hein HO, Meyer HW, Gyntelberg F (2001) Exposure to cold and draught, alcohol consumption, and the NS-phenotype are associated with chronic bronchitis: an epidemiological investigation of 3387 men aged 53–75 years: the Copenhagen male study. Occup Environ Med 58:160–164

    Article  PubMed  CAS  Google Scholar 

  96. Heinemann HO (1977) Alcohol and the lung. A brief review. Am J Med 63:81–85

    Article  PubMed  CAS  Google Scholar 

  97. Spurzem JR, Veys T, Devasure J, Sisson JH, Wyatt TA (2005) Ethanol treatment reduces bovine bronchial epithelial cell migration. Alcohol Clin Exp Res 29:485–492

    Article  PubMed  CAS  Google Scholar 

  98. Wyatt TA, Kharbanda KK, Tuma DJ, Sisson JH, Spurzem JR (2005) Malondialdehyde-acetaldehyde adducts decrease bronchial epithelial wound repair. Alcohol 36:31–40

    Article  PubMed  CAS  Google Scholar 

  99. Dosanjh A, Zuraw B (2003) Endothelin-1 (ET-1) decreases human bronchial epithelial cell migration and proliferation: implications for airway remodeling in asthma. J Asthma 40:883–886

    Article  PubMed  CAS  Google Scholar 

  100. Bove PF, van der Vliet A (2006) Nitric oxide and reactive nitrogen species in airway epithelial signaling and inflammation. Free Radic Biol Med 41:515–527

    Article  PubMed  CAS  Google Scholar 

  101. Bove PF, Wesley UV, Greul AK, Hristova M, Dostmann WR, van der Vliet A (2007) Nitric oxide promotes airway epithelial wound repair through enhanced activation of MMP-9. Am J Respir Cell Mol Biol 36:138–146

    Article  PubMed  CAS  Google Scholar 

  102. Bove PF, Hristova M, Wesley UV, Olson N, Lounsbury KM, van der Vliet A (2008) Inflammatory levels of nitric oxide inhibit airway epithelial cell migration by inhibition of the kinase ERK1/2 and activation of hypoxia-inducible factor-1 alpha. J Biol Chem 283:17919–17928

    Article  PubMed  CAS  Google Scholar 

  103. Liu M (2007) Ventilator-induced lung injury and mechanotransduction: why should we care? Crit Care 11:168

    Article  PubMed  Google Scholar 

  104. Han B, Lodyga M, Liu M (2005) Ventilator-induced lung injury: role of protein–protein interaction in mechanosensation. Proc Am Thorac Soc 2:181–187

    Article  PubMed  CAS  Google Scholar 

  105. Savla U, Waters CM (1998) Mechanical strain inhibits repair of airway epithelium in vitro. Am J Physiol 274:L883–L892

    PubMed  CAS  Google Scholar 

  106. Waters CM, Savla U (1999) Keratinocyte growth factor accelerates wound closure in airway epithelium during cyclic mechanical strain. J Cell Physiol 181:424–432

    Article  PubMed  CAS  Google Scholar 

  107. Han B, Bai XH, Lodyga M, Xu J, Yang BB, Keshavjee S, Post M, Liu M (2004) Conversion of mechanical force into biochemical signaling. J Biol Chem 279:54793–54801

    Article  PubMed  CAS  Google Scholar 

  108. Liu M, Tanswell AK, Post M (1999) Mechanical force-induced signal transduction in lung cells. Am J Physiol 277:L667–L683

    PubMed  CAS  Google Scholar 

  109. Desai LP, White SR, Waters CM (2009) Mechanical stretch decreases FAK phosphorylation and reduces cell migration through loss of JIP3-induced JNK phosphorylation in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 297:L520–L529

    Article  PubMed  CAS  Google Scholar 

  110. Hajj R, Lesimple P, Nawrocki-Raby B, Birembaut P, Puchelle E, Coraux C (2007) Human airway surface epithelial regeneration is delayed and abnormal in cystic fibrosis. J Pathol 211:340–350

    Article  PubMed  CAS  Google Scholar 

  111. Fulcher ML, Gabriel SE, Olsen JC, Tatreau JR, Gentzsch M, Livanos E, Saavedra MT, Salmon P, Randell SH (2009) Novel human bronchial epithelial cell lines for cystic fibrosis research. Am J Physiol Lung Cell Mol Physiol 296:L82–L91

    Article  PubMed  CAS  Google Scholar 

  112. Schiller KR, Maniak PJ, O’Grady SM (2010) Cystic fibrosis transmembrane conductance regulator is involved in airway epithelial wound repair. Am J Physiol Cell Physiol 299:C912–C921

    Article  PubMed  CAS  Google Scholar 

  113. Sun YH, Reid B, Fontaine JH, Miller LA, Hyde DM, Mogilner A, Zhao M (2011) Airway epithelial wounds in rhesus monkey generate ionic currents that guide cell migration to promote healing. J Appl Physiol 111(4):1031–1041

    Article  PubMed  CAS  Google Scholar 

  114. Gimona M, Buccione R, Courtneidge SA, Linder S (2008) Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol 20:235–241

    Article  PubMed  CAS  Google Scholar 

  115. Xiao H, Bai XH, Kapus A, Lu WY, Mak AS, Liu M (2010) The protein kinase C cascade regulates recruitment of matrix metalloprotease 9 to podosomes and its release and activation. Mol Cell Biol 30:5545–5561

    Article  PubMed  CAS  Google Scholar 

  116. Xiao H, Han B, Lodyga M, Bai XH, Wang Y, Liu M (2012) The actin-binding domain of actin filament-associated protein (AFAP) is involved in the regulation of cytoskeletal structure. Cell Mol Life Sci 69:1137–1151

    Article  PubMed  CAS  Google Scholar 

  117. Yamada M, Kubo H, Kobayashi S et al (2004) Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury. J Immunol 172:1266–1272

    PubMed  CAS  Google Scholar 

  118. Loebinger MR, Janes SM (2007) Stem cells for lung disease. Chest 132:279–285

    Article  PubMed  Google Scholar 

  119. Kotton DN, Ma BY, Cardoso WV et al (2001) Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development 128:5181–5188

    PubMed  CAS  Google Scholar 

  120. Loi R, Beckett T, Goncz KK et al (2006) Limited restoration of cystic fibrosis lung epithelium in vivo with adult bone marrow derived cells. Am J Respir Crit Care Med 173:171–179

    Article  PubMed  CAS  Google Scholar 

  121. Gomperts BN, Belperio JA, Rao PN, Randell SH, Fishbein MC, Burdick MD et al (2006) Circulating progenitor epithelial cells traffic via CXCR4/CXCL12 in response to airway injury. J Immunol 176:1916–1927

    PubMed  CAS  Google Scholar 

  122. Wong AP, Dutly AE, Sacher A, Lee H, Hwang DM, Liu M, Keshavjee S, Hu J, Waddell TK (2007) Targeted cell replacement with bone marrow cells for airway epithelial regeneration. Am J Physiol Lung Cell Mol Physiol 293:L740–L752

    Article  PubMed  CAS  Google Scholar 

  123. Savla U, Olson LE, Waters CM (2004) Mathematical modeling of airway epithelial wound closure during cyclic mechanical strain. J Appl Physiol 96:566–574

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Grace Shen-Tu and Ms. Serisha Moodley for critical comments on this manuscript. This work was supported by the Canadian Institutes of Health Research (CIHR) operating grants MOP-13270 and MOP-42546 to ML. HX was a recipient of the Peterborough K.M. Hunter Graduate Studentship for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, H., Li, D.X. & Liu, M. Knowledge translation: airway epithelial cell migration and respiratory diseases. Cell. Mol. Life Sci. 69, 4149–4162 (2012). https://doi.org/10.1007/s00018-012-1044-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1044-z

Keywords

Navigation