Skip to main content

Advertisement

Log in

Cycling or not cycling: cell cycle regulatory molecules and adult neurogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The adult brain most probably reaches its highest degree of plasticity with the lifelong generation and integration of new neurons in the hippocampus and olfactory system. Neural precursor cells (NPCs) residing both in the subgranular zone of the dentate gyrus and in the subventricular zone of the lateral ventricles continuously generate neurons that populate the dentate gyrus and the olfactory bulb, respectively. The regulation of NPC proliferation in the adult brain has been widely investigated in the past few years. Yet, the intrinsic cell cycle machinery underlying NPC proliferation remains largely unexplored. In this review, we discuss the cell cycle components that are involved in the regulation of NPC proliferation in both neurogenic areas of the adult brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ma DK, Bonaguidi MA, Ming GL, Song H (2009) Adult neural stem cells in the mammalian central nervous system. Cell Res 19(6):672–682

    Article  PubMed  CAS  Google Scholar 

  2. Imayoshi I, Sakamoto M, Ohtsuka T, Kageyama R (2009) Continuous neurogenesis in the adult brain. Dev Growth Differ 51(3):379–386

    Article  PubMed  Google Scholar 

  3. Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441(7097):1094–1096

    Article  PubMed  CAS  Google Scholar 

  4. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660

    Article  PubMed  CAS  Google Scholar 

  5. Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30(11):630–641

    Article  PubMed  CAS  Google Scholar 

  6. Lundberg AS, Weinberg RA (1998) Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol 18(2):753–761

    PubMed  CAS  Google Scholar 

  7. Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC (1999) Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98(6):859–869

    Article  PubMed  CAS  Google Scholar 

  8. Nigg EA (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2(1):21–32

    Article  PubMed  CAS  Google Scholar 

  9. Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9(10):1149–1163

    Article  PubMed  CAS  Google Scholar 

  10. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166

    Article  PubMed  CAS  Google Scholar 

  11. Satyanarayana A, Kaldis P (2009) Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28(33):2925–2939

    Article  PubMed  CAS  Google Scholar 

  12. Malumbres M, Sotillo R, Santamaria D, Galan J, Cerezo A, Ortega S, Dubus P, Barbacid M (2004) Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118(4):493–504

    Article  PubMed  CAS  Google Scholar 

  13. Kozar K, Ciemerych MA, Rebel VI, Shigematsu H, Zagozdzon A, Sicinska E, Geng Y, Yu Q, Bhattacharya S, Bronson RT, Akashi K, Sicinski P (2004) Mouse development and cell proliferation in the absence of D-cyclins. Cell 118(4):477–491

    Article  PubMed  CAS  Google Scholar 

  14. Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P (2003) Cdk2 knockout mice are viable. Curr Biol 13(20):1775–1785

    Article  PubMed  CAS  Google Scholar 

  15. Pagano M, Jackson PK (2004) Wagging the dogma; tissue-specific cell cycle control in the mouse embryo. Cell 118(5):535–538

    Article  PubMed  CAS  Google Scholar 

  16. Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM, Kaushansky K, Roberts JM (1996) A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 85(5):733–744

    Article  PubMed  CAS  Google Scholar 

  17. Callaghan DA, Dong L, Callaghan SM, Hou YX, Dagnino L, Slack RS (1999) Neural precursor cells differentiating in the absence of Rb exhibit delayed terminal mitosis and deregulated E2F 1 and 3 activity. Dev Biol 207(2):257–270

    Article  PubMed  CAS  Google Scholar 

  18. Huard JM, Forster CC, Carter ML, Sicinski P, Ross ME (1999) Cerebellar histogenesis is disturbed in mice lacking cyclin D2. Development 126(9):1927–1935

    PubMed  CAS  Google Scholar 

  19. Ferguson KL, Callaghan SM, O’Hare MJ, Park DS, Slack RS (2000) The Rb-CDK4/6 signaling pathway is critical in neural precursor cell cycle regulation. J Biol Chem 275(43):33593–33600

    Article  PubMed  CAS  Google Scholar 

  20. Cooper-Kuhn CM, Vroemen M, Brown J, Ye H, Thompson MA, Winkler J, Kuhn HG (2002) Impaired adult neurogenesis in mice lacking the transcription factor E2F1. Mol Cell Neurosci 21(2):312–323

    Article  PubMed  CAS  Google Scholar 

  21. Zhu Y, Jin K, Mao XO, Greenberg DA (2003) Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression. FASEB J 17(2):186–193

    Article  PubMed  CAS  Google Scholar 

  22. Lukaszewicz A, Savatier P, Cortay V, Giroud P, Huissoud C, Berland M, Kennedy H, Dehay C (2005) G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47(3):353–364

    Article  PubMed  CAS  Google Scholar 

  23. Lange C, Huttner WB, Calegari F (2009) Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell 5(3):320–331

    Article  PubMed  CAS  Google Scholar 

  24. Pilaz LJ, Patti D, Marcy G, Ollier E, Pfister S, Douglas RJ, Betizeau M, Gautier E, Cortay V, Doerflinger N, Kennedy H, Dehay C (2009) Forced G1-phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex. Proc Natl Acad Sci USA 106(51):21924–21929

    Article  PubMed  CAS  Google Scholar 

  25. Malumbres M, Harlow E, Hunt T, Hunter T, Lahti JM, Manning G, Morgan DO, Tsai LH, Wolgemuth DJ (2009) Cyclin-dependent kinases: a family portrait. Nat Cell Biol 11(11):1275–1276

    Article  PubMed  CAS  Google Scholar 

  26. van den Heuvel S, Harlow E (1993) Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262(5142):2050–2054

    Article  PubMed  Google Scholar 

  27. Ye X, Zhu C, Harper JW (2001) A premature-termination mutation in the Mus musculus cyclin-dependent kinase 3 gene. Proc Natl Acad Sci USA 98(4):1682–1686

    Article  PubMed  CAS  Google Scholar 

  28. Tsai LH, Delalle I, Caviness VS Jr, Chae T, Harlow E (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371(6496):419–423

    Article  PubMed  CAS  Google Scholar 

  29. Lew J, Huang QQ, Qi Z, Winkfein RJ, Aebersold R, Hunt T, Wang JH (1994) A brain-specific activator of cyclin-dependent kinase 5. Nature 371(6496):423–426

    Article  PubMed  CAS  Google Scholar 

  30. Tang D, Yeung J, Lee KY, Matsushita M, Matsui H, Tomizawa K, Hatase O, Wang JH (1995) An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. J Biol Chem 270(45):26897–26903

    Article  PubMed  CAS  Google Scholar 

  31. Hellmich MR, Pant HC, Wada E, Battey JF (1992) Neuronal cdc2-like kinase: a cdc2-related protein kinase with predominantly neuronal expression. Proc Natl Acad Sci USA 89(22):10867–10871

    Article  PubMed  CAS  Google Scholar 

  32. Santamaria D, Barriere C, Cerqueira A, Hunt S, Tardy C, Newton K, Caceres JF, Dubus P, Malumbres M, Barbacid M (2007) Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448(7155):811–815

    Article  PubMed  CAS  Google Scholar 

  33. Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy EP, Barbacid M (1999) Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 22(1):44–52

    Article  PubMed  CAS  Google Scholar 

  34. Tsutsui T, Hesabi B, Moons DS, Pandolfi PP, Hansel KS, Koff A, Kiyokawa H (1999) Targeted disruption of CDK4 delays cell cycle entry with enhanced p27(Kip1) activity. Mol Cell Biol 19(10):7011–7019

    PubMed  CAS  Google Scholar 

  35. Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M (2003) Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 35(1):25–31

    Article  PubMed  CAS  Google Scholar 

  36. Vandenbosch R, Borgs L, Beukelaers P, Foidart A, Nguyen L, Moonen G, Berthet C, Kaldis P, Gallo V, Belachew S, Malgrange B (2007) CDK2 is dispensable for adult hippocampal neurogenesis. Cell Cycle 6(24):3065–3069

    Article  PubMed  CAS  Google Scholar 

  37. Golsteyn RM (2005) Cdk1 and Cdk2 complexes (cyclin dependent kinases) in apoptosis: a role beyond the cell cycle. Cancer Lett 217(2):129–138

    Article  PubMed  CAS  Google Scholar 

  38. Copani A, Condorelli F, Caruso A, Vancheri C, Sala A, Giuffrida Stella AM, Canonico PL, Nicoletti F, Sortino MA (1999) Mitotic signaling by beta-amyloid causes neuronal death. FASEB J 13(15):2225–2234

    PubMed  CAS  Google Scholar 

  39. Rideout HJ, Wang Q, Park DS, Stefanis L (2003) Cyclin-dependent kinase activity is required for apoptotic death but not inclusion formation in cortical neurons after proteasomal inhibition. J Neurosci 23(4):1237–1245

    PubMed  CAS  Google Scholar 

  40. Jablonska B, Aguirre A, Vandenbosch R, Belachew S, Berthet C, Kaldis P, Gallo V (2007) Cdk2 is critical for proliferation and self-renewal of neural progenitor cells in the adult subventricular zone. J Cell Biol 179(6):1231–1245

    Article  PubMed  CAS  Google Scholar 

  41. Beukelaers P, Vandenbosch R, Caron N, Nguyen L, Belachew S, Moonen G, Kiyokawa H, Barbacid M, Santamaria D, Malgrange B (2011) Cdk6-Dependent Regulation of G(1) Length Controls Adult Neurogenesis. Stem Cells 29(4):713–724

    Article  PubMed  CAS  Google Scholar 

  42. Calegari F, Huttner WB (2003) An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J Cell Sci 116(Pt 24):4947–4955

    Article  PubMed  CAS  Google Scholar 

  43. Ohshima T, Hirasawa M, Tabata H, Mutoh T, Adachi T, Suzuki H, Saruta K, Iwasato T, Itohara S, Hashimoto M, Nakajima K, Ogawa M, Kulkarni AB, Mikoshiba K (2007) Cdk5 is required for multipolar-to-bipolar transition during radial neuronal migration and proper dendrite development of pyramidal neurons in the cerebral cortex. Development 134(12):2273–2282

    Article  PubMed  CAS  Google Scholar 

  44. Ohshima T, Mikoshiba K (2002) Reelin signaling and Cdk5 in the control of neuronal positioning. Mol Neurobiol 26(2–3):153–166

    Article  PubMed  CAS  Google Scholar 

  45. Hirota Y, Ohshima T, Kaneko N, Ikeda M, Iwasato T, Kulkarni AB, Mikoshiba K, Okano H, Sawamoto K (2007) Cyclin-dependent kinase 5 is required for control of neuroblast migration in the postnatal subventricular zone. J Neurosci 27(47):12829–12838

    Article  PubMed  CAS  Google Scholar 

  46. Jessberger S, Aigner S, Clemenson GD Jr, Toni N, Lie DC, Karalay O, Overall R, Kempermann G, Gage FH (2008) Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus. PLoS Biol 6(11):e272

    Article  PubMed  CAS  Google Scholar 

  47. Lagace DC, Benavides DR, Kansy JW, Mapelli M, Greengard P, Bibb JA, Eisch AJ (2008) Cdk5 is essential for adult hippocampal neurogenesis. Proc Natl Acad Sci USA 105(47):18567–18571

    Article  PubMed  CAS  Google Scholar 

  48. Fantl V, Stamp G, Andrews A, Rosewell I, Dickson C (1995) Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev 9(19):2364–2372

    Article  PubMed  CAS  Google Scholar 

  49. Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H, Haslam SZ, Bronson RT, Elledge SJ, Weinberg RA (1995) Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82(4):621–630

    Article  PubMed  CAS  Google Scholar 

  50. Ma C, Papermaster D, Cepko CL (1998) A unique pattern of photoreceptor degeneration in cyclin D1 mutant mice. Proc Natl Acad Sci USA 95(17):9938–9943

    Article  PubMed  CAS  Google Scholar 

  51. Sicinski P, Donaher JL, Geng Y, Parker SB, Gardner H, Park MY, Robker RL, Richards JS, McGinnis LK, Biggers JD, Eppig JJ, Bronson RT, Elledge SJ, Weinberg RA (1996) Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 384(6608):470–474

    Article  PubMed  CAS  Google Scholar 

  52. Robker RL, Richards JS (1998) Hormone-induced proliferation and differentiation of granulosa cells: a coordinated balance of the cell cycle regulators cyclin D2 and p27Kip1. Mol Endocrinol 12(7):924–940

    Article  PubMed  CAS  Google Scholar 

  53. Sicinska E, Aifantis I, Le Cam L, Swat W, Borowski C, Yu Q, Ferrando AA, Levin SD, Geng Y, von Boehmer H, Sicinski P (2003) Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4(6):451–461

    Article  PubMed  CAS  Google Scholar 

  54. Jaholkowski P, Kiryk A, Jedynak P, Ben Abdallah NM, Knapska E, Kowalczyk A, Piechal A, Blecharz-Klin K, Figiel I, Lioudyno V, Widy-Tyszkiewicz E, Wilczynski GM, Lipp HP, Kaczmarek L, Filipkowski RK (2009) New hippocampal neurons are not obligatory for memory formation; cyclin D2 knockout mice with no adult brain neurogenesis show learning. Learn Mem 16(7):439–451

    Article  PubMed  Google Scholar 

  55. Kowalczyk A, Filipkowski RK, Rylski M, Wilczynski GM, Konopacki FA, Jaworski J, Ciemerych MA, Sicinski P, Kaczmarek L (2004) The critical role of cyclin D2 in adult neurogenesis. J Cell Biol 167(2):209–213

    Article  PubMed  CAS  Google Scholar 

  56. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386(6624):493–495

    Article  PubMed  CAS  Google Scholar 

  57. Steiner B, Zurborg S, Horster H, Fabel K, Kempermann G (2008) Differential 24 h responsiveness of Prox1-expressing precursor cells in adult hippocampal neurogenesis to physical activity, environmental enrichment, and kainic acid-induced seizures. Neuroscience 154(2):521–529

    Article  PubMed  CAS  Google Scholar 

  58. van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1(3):191–198

    Article  PubMed  CAS  Google Scholar 

  59. Assoian RK, Zhu X (1997) Cell anchorage and the cytoskeleton as partners in growth factor dependent cell cycle progression. Curr Opin Cell Biol 9(1):93–98

    Article  PubMed  CAS  Google Scholar 

  60. Matsushime H, Roussel MF, Ashmun RA, Sherr CJ (1991) Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 65(4):701–713

    Article  PubMed  CAS  Google Scholar 

  61. Glickstein SB, Moore H, Slowinska B, Racchumi J, Suh M, Chuhma N, Ross ME (2007) Selective cortical interneuron and GABA deficits in cyclin D2-null mice. Development 134(22):4083–4093

    Article  PubMed  CAS  Google Scholar 

  62. Muramatsu R, Ikegaya Y, Matsuki N, Koyama R (2007) Neonatally born granule cells numerically dominate adult mice dentate gyrus. Neuroscience 148(3):593–598

    Article  PubMed  CAS  Google Scholar 

  63. Mathews EA, Morgenstern NA, Piatti VC, Zhao C, Jessberger S, Schinder AF, Gage FH (2010) A distinctive layering pattern of mouse dentate granule cells is generated by developmental and adult neurogenesis. J Comp Neurol 518(22):4479–4490

    Article  PubMed  Google Scholar 

  64. Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11(10):1153–1161

    Article  PubMed  CAS  Google Scholar 

  65. Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114(9):1299–1307

    PubMed  CAS  Google Scholar 

  66. Zindy F, Quelle DE, Roussel MF, Sherr CJ (1997) Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15(2):203–211

    Article  PubMed  CAS  Google Scholar 

  67. Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443(7110):448–452

    Article  PubMed  CAS  Google Scholar 

  68. Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16(6):2027–2033

    PubMed  CAS  Google Scholar 

  69. Olariu A, Cleaver KM, Cameron HA (2007) Decreased neurogenesis in aged rats results from loss of granule cell precursors without lengthening of the cell cycle. J Comp Neurol 501(4):659–667

    Article  PubMed  Google Scholar 

  70. Hattiangady B, Shetty AK (2008) Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus. Neurobiol Aging 29(1):129–147

    Article  PubMed  CAS  Google Scholar 

  71. Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 19(12):1432–1437

    Article  PubMed  CAS  Google Scholar 

  72. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425(6961):962–967

    Article  PubMed  CAS  Google Scholar 

  73. Bruggeman SW, Valk-Lingbeek ME, van der Stoop PP, Jacobs JJ, Kieboom K, Tanger E, Hulsman D, Leung C, Arsenijevic Y, Marino S, van Lohuizen M (2005) Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev 19(12):1438–1443

    Article  PubMed  CAS  Google Scholar 

  74. Lee MH, Reynisdottir I, Massague J (1995) Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev 9(6):639–649

    Article  PubMed  CAS  Google Scholar 

  75. Harper JW, Elledge SJ, Keyomarsi K, Dynlacht B, Tsai LH, Zhang P, Dobrowolski S, Bai C, Connell-Crowley L, Swindell E et al (1995) Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 6(4):387–400

    PubMed  CAS  Google Scholar 

  76. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J (1994) Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78(1):59–66

    Article  PubMed  CAS  Google Scholar 

  77. Carnero A, Hannon GJ (1998) The INK4 family of CDK inhibitors. Curr Top Microbiol Immunol 227:43–55

    Article  PubMed  CAS  Google Scholar 

  78. Vidal A, Koff A (2000) Cell-cycle inhibitors: three families united by a common cause. Gene 247(1–2):1–15

    Article  PubMed  CAS  Google Scholar 

  79. Kippin TE, Martens DJ, van der Kooy D (2005) p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev 19(6):756–767

    Article  PubMed  CAS  Google Scholar 

  80. Qiu J, Takagi Y, Harada J, Rodrigues N, Moskowitz MA, Scadden DT, Cheng T (2004) Regenerative response in ischemic brain restricted by p21cip1/waf1. J Exp Med 199(7):937–945

    Article  PubMed  CAS  Google Scholar 

  81. Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, Weiss S, van der Kooy D (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13(5):1071–1082

    Article  PubMed  CAS  Google Scholar 

  82. Seaberg RM, van der Kooy D (2002) Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J Neurosci 22(5):1784–1793

    PubMed  CAS  Google Scholar 

  83. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, Scadden DT (2000) Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287(5459):1804–1808

    Article  PubMed  CAS  Google Scholar 

  84. Pechnick RN, Zonis S, Wawrowsky K, Pourmorady J, Chesnokova V (2008) p21Cip1 restricts neuronal proliferation in the subgranular zone of the dentate gyrus of the hippocampus. Proc Natl Acad Sci USA 105(4):1358–1363

    Article  PubMed  CAS  Google Scholar 

  85. Doetsch F, Verdugo JM, Caille I, Alvarez-Buylla A, Chao MV, Casaccia-Bonnefil P (2002) Lack of the cell-cycle inhibitor p27Kip1 results in selective increase of transit-amplifying cells for adult neurogenesis. J Neurosci 22(6):2255–2264

    PubMed  CAS  Google Scholar 

  86. Durand B, Gao FB, Raff M (1997) Accumulation of the cyclin-dependent kinase inhibitor p27/Kip1 and the timing of oligodendrocyte differentiation. EMBO J 16(2):306–317

    Article  PubMed  CAS  Google Scholar 

  87. Casaccia-Bonnefil P, Hardy RJ, Teng KK, Levine JM, Koff A, Chao MV (1999) Loss of p27Kip1 function results in increased proliferative capacity of oligodendrocyte progenitors but unaltered timing of differentiation. Development 126(18):4027–4037

    PubMed  CAS  Google Scholar 

  88. Casaccia-Bonnefil P, Tikoo R, Kiyokawa H, Friedrich V Jr, Chao MV, Koff A (1997) Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor p27Kip1. Genes Dev 11(18):2335–2346

    Article  PubMed  CAS  Google Scholar 

  89. Cheng T, Rodrigues N, Dombkowski D, Stier S, Scadden DT (2000) Stem cell repopulation efficiency but not pool size is governed by p27(kip1). Nat Med 6(11):1235–1240

    Article  PubMed  CAS  Google Scholar 

  90. Qiu J, Takagi Y, Harada J, Topalkara K, Wang Y, Sims JR, Zheng G, Huang P, Ling Y, Scadden DT, Moskowitz MA, Cheng T (2009) p27Kip1 constrains proliferation of neural progenitor cells in adult brain under homeostatic and ischemic conditions. Stem Cells 27(4):920–927

    Article  PubMed  CAS  Google Scholar 

  91. Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J, Arteaga CL (2002) PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 8(10):1145–1152

    Article  PubMed  CAS  Google Scholar 

  92. Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, Franssen E, Slingerland JM (2002) PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 8(10):1153–1160

    Article  PubMed  CAS  Google Scholar 

  93. Mudo G, Belluardo N, Mauro A, Fuxe K (2007) Acute intermittent nicotine treatment induces fibroblast growth factor-2 in the subventricular zone of the adult rat brain and enhances neuronal precursor cell proliferation. Neuroscience 145(2):470–483

    Article  PubMed  CAS  Google Scholar 

  94. Nguyen L, Besson A, Heng JI, Schuurmans C, Teboul L, Parras C, Philpott A, Roberts JM, Guillemot F (2006) p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev 20(11):1511–1524

    Article  PubMed  CAS  Google Scholar 

  95. Li X, Tang X, Jablonska B, Aguirre A, Gallo V, Luskin MB (2009) p27(KIP1) regulates neurogenesis in the rostral migratory stream and olfactory bulb of the postnatal mouse. J Neurosci 29(9):2902–2914

    Article  PubMed  CAS  Google Scholar 

  96. Burkhart DL, Sage J (2008) Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8(9):671–682

    Article  PubMed  CAS  Google Scholar 

  97. Clarke AR, Maandag ER, van Roon M, van der Lugt NM, van der Valk M, Hooper ML, Berns A, te Riele H (1992) Requirement for a functional Rb-1 gene in murine development. Nature 359(6393):328–330

    Article  PubMed  CAS  Google Scholar 

  98. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359(6393):295–300

    Article  PubMed  CAS  Google Scholar 

  99. Lee EY, Chang CY, Hu N, Wang YC, Lai CC, Herrup K, Lee WH, Bradley A (1992) Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359(6393):288–294

    Article  PubMed  CAS  Google Scholar 

  100. Ferguson KL, Vanderluit JL, Hebert JM, McIntosh WC, Tibbo E, MacLaurin JG, Park DS, Wallace VA, Vooijs M, McConnell SK, Slack RS (2002) Telencephalon-specific Rb knockouts reveal enhanced neurogenesis, survival and abnormal cortical development. EMBO J 21(13):3337–3346

    Article  PubMed  CAS  Google Scholar 

  101. MacPherson D, Sage J, Crowley D, Trumpp A, Bronson RT, Jacks T (2003) Conditional mutation of Rb causes cell cycle defects without apoptosis in the central nervous system. Mol Cell Biol 23(3):1044–1053

    Article  PubMed  CAS  Google Scholar 

  102. Cobrinik D, Lee MH, Hannon G, Mulligan G, Bronson RT, Dyson N, Harlow E, Beach D, Weinberg RA, Jacks T (1996) Shared role of the pRB-related p130 and p107 proteins in limb development. Genes Dev 10(13):1633–1644

    Article  PubMed  CAS  Google Scholar 

  103. Lee MH, Williams BO, Mulligan G, Mukai S, Bronson RT, Dyson N, Harlow E, Jacks T (1996) Targeted disruption of p107: functional overlap between p107 and Rb. Genes Dev 10(13):1621–1632

    Article  PubMed  CAS  Google Scholar 

  104. Vanderluit JL, Ferguson KL, Nikoletopoulou V, Parker M, Ruzhynsky V, Alexson T, McNamara SM, Park DS, Rudnicki M, Slack RS (2004) p107 regulates neural precursor cells in the mammalian brain. J Cell Biol 166(6):853–863

    Article  PubMed  CAS  Google Scholar 

  105. Hitoshi S, Alexson T, Tropepe V, Donoviel D, Elia AJ, Nye JS, Conlon RA, Mak TW, Bernstein A, van der Kooy D (2002) Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 16(7):846–858

    Article  PubMed  CAS  Google Scholar 

  106. Vanderluit JL, Wylie CA, McClellan KA, Ghanem N, Fortin A, Callaghan S, MacLaurin JG, Park DS, Slack RS (2007) The Retinoblastoma family member p107 regulates the rate of progenitor commitment to a neuronal fate. J Cell Biol 178(1):129–139

    Article  PubMed  CAS  Google Scholar 

  107. McClellan KA, Slack RS (2007) Specific in vivo roles for E2Fs in differentiation and development. Cell Cycle 6(23):2917–2927

    Article  PubMed  CAS  Google Scholar 

  108. Lammens T, Li J, Leone G, De Veylder L (2009) Atypical E2Fs: new players in the E2F transcription factor family. Trends Cell Biol 19(3):111–118

    Article  PubMed  CAS  Google Scholar 

  109. Field SJ, Tsai FY, Kuo F, Zubiaga AM, Kaelin WG Jr, Livingston DM, Orkin SH, Greenberg ME (1996) E2F–1 functions in mice to promote apoptosis and suppress proliferation. Cell 85(4):549–561

    Article  PubMed  CAS  Google Scholar 

  110. Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson NJ (1996) Tumor induction and tissue atrophy in mice lacking E2F–1. Cell 85(4):537–548

    Article  PubMed  CAS  Google Scholar 

  111. Tevosian SG, Paulson KE, Bronson R, Yee AS (1996) Expression of the E2F–1/DP-1 transcription factor in murine development. Cell Growth Differ 7(1):43–52

    PubMed  CAS  Google Scholar 

  112. Dagnino L, Fry CJ, Bartley SM, Farnham P, Gallie BL, Phillips RA (1997) Expression patterns of the E2F family of transcription factors during mouse nervous system development. Mech Dev 66(1–2):13–25

    Article  PubMed  CAS  Google Scholar 

  113. Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9(2):115–128

    Article  PubMed  CAS  Google Scholar 

  114. Mira H, Andreu Z, Suh H, Lie DC, Jessberger S, Consiglio A, San Emeterio J, Hortiguela R, Marques-Torrejon MA, Nakashima K, Colak D, Gotz M, Farinas I, Gage FH (2010) Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell 7(1):78–89

    Article  PubMed  CAS  Google Scholar 

  115. He S, Iwashita T, Buchstaller J, Molofsky AV, Thomas D, Morrison SJ (2009) Bmi-1 over-expression in neural stem/progenitor cells increases proliferation and neurogenesis in culture but has little effect on these functions in vivo. Dev Biol 328(2):257–272

    Article  PubMed  CAS  Google Scholar 

  116. Meletis K, Wirta V, Hede SM, Nister M, Lundeberg J, Frisen J (2006) p53 suppresses the self-renewal of adult neural stem cells. Development 133(2):363–369

    Article  PubMed  CAS  Google Scholar 

  117. Medrano S, Scrable H (2005) Maintaining appearances–the role of p53 in adult neurogenesis. Biochem Biophys Res Commun 331(3):828–833

    Article  PubMed  CAS  Google Scholar 

  118. Gregorian C, Nakashima J, Le Belle J, Ohab J, Kim R, Liu A, Smith KB, Groszer M, Garcia AD, Sofroniew MV, Carmichael ST, Kornblum HI, Liu X, Wu H (2009) Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. J Neurosci 29(6):1874–1886

    Article  PubMed  CAS  Google Scholar 

  119. Paik JH, Ding Z, Narurkar R, Ramkissoon S, Muller F, Kamoun WS, Chae SS, Zheng H, Ying H, Mahoney J, Hiller D, Jiang S, Protopopov A, Wong WH, Chin L, Ligon KL, DePinho RA (2009) FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5(5):540–553

    Article  PubMed  CAS  Google Scholar 

  120. Renault VM, Rafalski VA, Morgan AA, Salih DA, Brett JO, Webb AE, Villeda SA, Thekkat PU, Guillerey C, Denko NC, Palmer TD, Butte AJ, Brunet A (2009) FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5(5):527–539

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fonds Léon Frédéricq (FLF) and the Fondation Médicale Reine Elisabeth. PB was supported by the FLF and a concerted action of the French Community of Belgium (Convention no. 04/09-322). RV is supported by a postdoctoral fellowship from the Alzheimer Society of Canada. NC is a research fellow of the Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA). LN and BM are respectively research associate and research director of the Belgian Fonds National de la Recherche Scientifique (FNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Malgrange.

Additional information

P. Beukelaers and R. Vandenbosch contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beukelaers, P., Vandenbosch, R., Caron, N. et al. Cycling or not cycling: cell cycle regulatory molecules and adult neurogenesis. Cell. Mol. Life Sci. 69, 1493–1503 (2012). https://doi.org/10.1007/s00018-011-0880-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0880-6

Keywords

Navigation