Skip to main content

Advertisement

Log in

Haploinsufficiency in mouse models of DNA repair deficiency: modifiers of penetrance

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mouse models of DNA repair deficiency are useful tools for determining susceptibility to disease. Cancer predisposition and premature aging are commonly impacted by deficiencies in DNA repair, presumably as a function of reduced genomic fitness. In this review, a comprehensive analysis of all DNA repair mutant mouse models has been completed in order to assess the importance of haploinsufficiency for these genes. This analysis brings to light a clear role for haploinsufficiency in disease predisposition. Unfortunately, much of the data on heterozygous models are buried or underinvestigated. In light of a better understanding that the role of DNA repair haploinsufficiency may play in penetrance of other oncogenic or disease causing factors, it may be in the interest of human health and disease prevention to further investigate the phenotypes in many of these mouse models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh DK, Ahn B, Bohr VA (2009) Roles of RECQ helicases in recombination based DNA repair, genomic stability and aging. Biogerontology 10:235–252

    Article  PubMed  CAS  Google Scholar 

  2. Cleaver JE, Revet I (2008) Clinical implications of the basic defects in Cockayne syndrome and xeroderma pigmentosum and the DNA lesions responsible for cancer, neurodegeneration and aging. Mech Ageing Dev 129:492–497

    Article  PubMed  CAS  Google Scholar 

  3. Tischkowitz M, Winqvist R (2011) Using mouse models to investigate the biological and physiological consequences of defects in the Fanconi anaemia/breast cancer DNA repair signalling pathway. J Pathol 224:301–305

    Article  PubMed  CAS  Google Scholar 

  4. Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C, Williams C, Stalker H, Hamid R, Hannig V, Abdel-Hamid H, Bader P, McCracken E, Niyazov D, Leppig K, Thiese H, Hummel M, Alexander N, Gorski J, Kussmann J, Shashi V, Johnson K, Rehder C, Ballif B, Shaffer LG, Eichler EE (2011) A copy number variation morbidity map of developmental delay. Nat Genet 43:838–846

    Article  PubMed  CAS  Google Scholar 

  5. Bartek J, Lukas J, Bartkova J (2007) DNA damage response as an anti-cancer barrier: damage threshold and the concept of ‘conditional haploinsufficiency’. Cell Cycle 6:2344–2347

    Article  PubMed  CAS  Google Scholar 

  6. Wilson SH, Kunkel TA (2000) Passing the baton in base excision repair. Nat Str Biol 7:176–178

    Article  CAS  Google Scholar 

  7. Barnes DE, Lindahl T (2004) Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet 38:445–476

    Article  PubMed  CAS  Google Scholar 

  8. Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, Seeberg E, Lindahl T, Barnes DE (1999) Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci USA 96:13300–13305

    Article  PubMed  CAS  Google Scholar 

  9. Kanai M, Tong W-M, Want Z-Q, Miwa M (2007) Haploinsufficiency of poly(ADP-ribose) polymerase-1-mediated poly(ADP-ribosyl)ation for centrosome duplication. Biochem Biophys Res Comm 359:426–430

    Article  PubMed  CAS  Google Scholar 

  10. Cabelof DC, Guo Z, Raffoul JJ, Sobol RW, Wilson SH, Richardson A, Heydari AR (2003) Base excision repair deficiency caused by polymerase beta haploinsufficiency: accelerated DNA damage and increased mutational response to carcinogens. Cancer Res 63:5799–5807

    PubMed  CAS  Google Scholar 

  11. Allen D, Herbert DC, McMahan CA, Rotrekl V, Sobol RW, Wilson SH, Walter CA (2008) Mutagenesis is elevated in male germ cells obtained from DNA polymerase-beta heterozygous mice. Biol Reprod 79:824–831

    Article  PubMed  CAS  Google Scholar 

  12. Kidane D, Dalal S, Keh A, Liu Y, Zelterman D, Sweasy JB (2011) DNA polymerase beta is critical for genomic stability of sperm cells. DNA Repair (Amst) 10:390–397

    Article  CAS  Google Scholar 

  13. Cabelof DC, Raffoul JJ, Nakamura J, Kapoor D, Abdalla H, Heydari AR (2004) Imbalanced base excision repair in response to folate deficiency is accelerated by polymerase beta haploinsufficiency. J Biol Chem 279:36504–36513

    Article  PubMed  CAS  Google Scholar 

  14. Ventrella-Lucente LF, Unnikrishnan A, Pilling AB, Patel HV, Kushwaha D, Dombkowski AA, Schmelz EM, Cabelof DC, Heydari AR (2010) Folate deficiency provides protection against colon carcinogenesis in DNA polymerase beta haploinsufficient mice. J Biol Chem 285:19246–19258

    Article  PubMed  CAS  Google Scholar 

  15. Cabelof DC, Ikeno Y, Nyska A, Busuttil RA, Anyangwe N, Vijg J, Matherly LH, Tucker JD, Wilson SH, Richardson A, Heydari AR (2006) Haploinsufficiency in DNA polymerase beta increases cancer risk with age and alters mortality rate. Cancer Res 66:7460–7465

    Article  PubMed  CAS  Google Scholar 

  16. Holcomb VB, Rodier F, Choi Y, Busuttil RA, Vogel H, Vijg J, Campisi J, Hasty P (2008) Ku80 deletion suppresses spontaneous tumors and induces a p53-mediated DNA damage response. Cancer Res 68:9497–9502

    Article  PubMed  CAS  Google Scholar 

  17. Meira LB, Devaraj S, Kisby GE, Burns DK, Daniel RL, Hammer RE, Grundy S, Jialal I, Friedberg EC (2001) Heterozygosity for the mouse Apex gene results in phenotypes associated with oxidative stress. Cancer Res 61:5552–5557

    PubMed  CAS  Google Scholar 

  18. Huamani J, McMahan CA, Herbert DC, Reddick R, McCarrey JR, MacInnes MI, Chen DJ, Walter CA (2004) Spontaneous mutagenesis is enhanced in Apex heterozygous mice. Mol Cell Biol 24:8145–8153

    Article  PubMed  CAS  Google Scholar 

  19. Unnikrishnan A, Prychitko TM, Patel HV, Chowdhury ME, Pilling AB, Ventrella-Lucente LF, Papakonstantinou EV, Cabelof DC, Heydari AR (2011) Folate deficiency regulates expression of DNA polymerase β in response to oxidative stress. Free Radic Biol Med 50:270–280

    Article  PubMed  CAS  Google Scholar 

  20. Meira LB, Cheo DL, Hammer RE, Burns DK, Reis A, Friedberg EC (1997) Genetic interaction between HAP1/REF-1 and p53. Nat Genet 17:145

    Article  PubMed  CAS  Google Scholar 

  21. McNeill DR, Lin P-C, Miller MG, Pistell PJ, de Souza-Pinto NC, Fishbein KW, Spencer RG, Liu Y, Pettan-Brewer C, Ladiges WC, Wilson DM III (2011) XRCC1 haploinsufficiency in mice has little effect on aging, but adversely modifies exposure-dependent susceptibility. Nucleic Acids Res (in press)

  22. Ladiges WC (2006) Mouse models of XRCC1 DNA repair polymorphisms and cancer. Oncogene 25:1612–1619

    Article  PubMed  CAS  Google Scholar 

  23. Meira LB, Moroski-Erkul CA, Green SL, Calvo JA, Bronson RT, Shah D, Samson LD (2009) Aag-initiated base excision repair drives alkylation-induced retinal degeneration in mice. Proc Natl Acad Sci USA 106:888–893

    Article  PubMed  CAS  Google Scholar 

  24. Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, Seeberg E, Lindahl T, Barnes DE (1999) Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci USA 96:13300–13305

    Article  PubMed  CAS  Google Scholar 

  25. Takao M, Kanno S, Shiromoto T, Hasegawa R, Ide H, Ikeda S, Sarker AH, Seki S, Xing JZ, Le XC, Weinfeld M, Kobayashi K, Miyazaki J, Muijtjens M, Hoeijmakers JH, van der Horst G, Yasui A (2002) Novel nuclear and mitochondrial glycosylases revealed by disruption of the mouse Nth1 gene encoding an endonuclease III homolog for repair of thymine glycols. EMBO J 21:3486–3493

    Article  PubMed  CAS  Google Scholar 

  26. Ocampo MT, Chaung W, Marenstein DR, Chan MK, Altamirano A, Basu AK, Boorstein RJ, Cunningham RP, Teebor GW (2002) Targeted deletion of mNth1 reveals a novel DNA repair enzyme activity. Mol Cell Biol 22:6111–6121

    Article  PubMed  CAS  Google Scholar 

  27. Sobol RW, Horton JK, Kühn R, Gu H, Singhal RK, Prasad R, Rajewsky K, Wilson SH (1996) Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature 379:183–186

    Article  PubMed  CAS  Google Scholar 

  28. Tebbs RS, Flannery ML, Meneses JJ, Hartmann A, Tucker JD, Thompson LH, Cleaver JE, Pedersen RA (1999) Requirement for the Xrcc1 DNA base excision repair gene during early mouse development. Dev Biol 208:513–529

    Article  PubMed  CAS  Google Scholar 

  29. Tebbs RS, Thompson LH, Cleaver JE (2003) Rescue of Xrcc1 knockout mouse embryo. DNA Repair (Amst) 2:1405–1417

    Article  CAS  Google Scholar 

  30. Engelward BP, Weeda G, Wyatt MD, Broekhof JL, de Wit J, Donker I, Allan JM, Gold B, Hoeijmakers JH, Samson LD (1997) Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase. Proc Natl Acad Sci USA 94:13087–13092

    Article  PubMed  CAS  Google Scholar 

  31. Friedberg EC (2001) How nucleotide excision repair protects against cancer. Nat Rev 1:22–33

    Article  CAS  Google Scholar 

  32. Wood RW (2010) Nucleotide excision repair proteins and interstrand crosslink repair. Environ Mol Mutagen 51:520–526

    PubMed  CAS  Google Scholar 

  33. Cheo DL, Ruven HJ, Meira LB, Hammer RE, Burns DK, Tappe NJ, van Zeeland AA, Mullenders LH, Friedberg EC (1997) Characterization of defective nucleotide excision repair in XPC mutant mice. Mutat Res 374:1–9

    Article  PubMed  CAS  Google Scholar 

  34. Uehara Y, Ikehata H, Furuya M, Kobayashi S, He D, Chen Y, Komura J, Ohtani H, Shimokawa I, Ono T (2009) XPC is involved in genome maintenance through multiple pathways in different tissues. Mutat Res 670:24–31

    Article  PubMed  CAS  Google Scholar 

  35. de Vries A, van Oostrom CT, Hofhuis FM, Dortant PM, Berg RJ, de Gruijl FR, Wester PW, van Kreijl CF, Capel PJ, van Steeg H et al (1995) Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 377:169–173

    Article  PubMed  Google Scholar 

  36. McWhir J, Selfridge J, Harrison DJ, Squires S, Melton DW (1993) Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nat Genet 5:217–224

    Article  PubMed  CAS  Google Scholar 

  37. Dollé ME, Busuttil RA, Garcia AM, Wijnhoven S, van Drunen E, Niedernhofer LJ, van der Horst G, Hoeijmakers JH, van Steeg H, Vijg J (2006) Increased genomic instability is not a prerequisite for shortened lifespan in DNA repair deficient mice. Mutat Res 596:22–35

    Article  PubMed  Google Scholar 

  38. Cheo DL, Meira LB, Burns DK, Reis AM, Issac T, Friedberg EC (2000) Ultraviolet B radiation-induced skin cancer in mice defective in the Xpc, Trp53, and Apex (HAP1) genes: genotype-specific effects on cancer predisposition and pathology of tumors. Cancer Res 60:1580–1584

    PubMed  CAS  Google Scholar 

  39. Helnen CD, Schmutte C, Fishel R (2002) DNA repair and tumorigenesis. Cancer Biol Therapy 1:477–485

    Google Scholar 

  40. Modrich P (2006) Mechanisms in eukaryotic mismatch repair. J Biol Chem 281:30305–30309

    Article  PubMed  CAS  Google Scholar 

  41. de Wind N, Dekker M, Berns A, Radman M, te Riele H (1995) Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82:321–330

    Article  PubMed  Google Scholar 

  42. de Wind N, Dekker M, van Rossum A, van der Valk M, te Riele H (1998) Mouse models for hereditary nonpolyposis colorectal cancer. Cancer Res 58:248–255

    PubMed  Google Scholar 

  43. Edelmann W, Cohen PE, Kane M, Lau K, Morrow B, Bennett S, Umar A, Kunkel T, Cattoretti G, Chaganti R, Pollard JW, Kolodner RD, Kucherlapati R (1996) Meiotic pachytene arrest in MLH1-deficient mice. Cell 85:1125–1134

    Article  PubMed  CAS  Google Scholar 

  44. Edelmann W, Yang K, Kuraguchi M, Heyer J, Lia M, Kneitz B, Fan K, Brown AM, Lipkin M, Kucherlapati R (2003) Tumorigenesis in Mlh1 and Mlh1/Apc1638 N mutant mice. Cancer Res 59:1301–1307

    Google Scholar 

  45. Takagi Y, Takahashi M, Sanada M, Ito R, Yamaizumi M, Sekiguchi M (2003) Roles of MGMT and MLH1 proteins in alkylation-induced apoptosis and mutagenesis. DNA Repair (Amst) 2:1135–1146

    Article  CAS  Google Scholar 

  46. Baker SM, Harris AC, Tsao JL, Flath TJ, Bronner CE, Gordon M, Shibata D, Liskay RM (1998) Enhanced intestinal adenomatous polyp formation in Pms2-/-;Min mice. Cancer Res 58:1087–1089

    PubMed  CAS  Google Scholar 

  47. Edelmann W, Yang K, Umar A, Heyer J, Lau K, Fan K, Liedtke W, Cohen PE, Kane MF, Lipford JR, Yu N, Crouse GF, Pollard JW, Kunkel T, Lipkin M, Kolodner R, Kucherlapati R (1997) Mutation in the mismatch repair gene Msh6 causes cancer susceptibility. Cell 91:467–477

    Article  PubMed  CAS  Google Scholar 

  48. Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, Christie DM, Monell C, Arnheim N, Bradley A, Ashley T, Liskay RM (1996) Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet 13:336–342

    Article  PubMed  CAS  Google Scholar 

  49. Baker SM, Bronner CE, Zhang L, Plug AW, Robatzek M, Warren G, Elliott EA, Yu J, Ashley T, Arnheim N, Flavell RA, Liskay RM (1995) Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 82:309–319

    Article  PubMed  CAS  Google Scholar 

  50. Kass EM, Jasin M (2010) Collaboration and competition between DNA double-strand break repair pathways. FEBS Lett 584:3703–3708

    Article  PubMed  CAS  Google Scholar 

  51. Xu H, Balakrishnan K, Malaterre J, Beasley M, Yan Y, Essers J, Appeldoorn E, Tomaszewski JM, Vazquez M, Verschoor S, Lavin MF, Bertoncello I, Ramsay RG, McKay MJ (2010) Rad21-cohesin haploinsufficiency impedes DNA repair and enhances gastrointestinal radiosensitivity in mice. PLoS One 5:e12112

    Article  PubMed  Google Scholar 

  52. Deans B, Griffin CS, Maconochie M, Thacker J (2000) Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice. EMBO J 19:6675–6685

    Article  PubMed  CAS  Google Scholar 

  53. Haines JW, Coster MR, Adam J, Cheeseman M, Ainsbury EA, Thacker J, Bouffler SD (2010) Xrcc2 modulates spontaneous and radiation-induced tumorigenesis in Apcmin/+mice. Mol Cancer Res 8:1227–1233

    Article  PubMed  CAS  Google Scholar 

  54. Soulas-Sprauel P, Rivera-Munoz P, Malivert L, Le Gyader G, Abramowske V, Revy P, de Villartay JP (2007) V(D)J and immunoglobulin class switch recombinations: a paradigm to study the regulation of DNA end-joining. Oncogene 26:7780–7791

    Article  PubMed  CAS  Google Scholar 

  55. Gu Y, Seidl KJ, Rathbun GA, Zhu C, Manis JP, van der Stoep N, Davidson L, Cheng HL, Sekiguchi JM, Frank K, Stanhope-Baker P, Schlissel MS, Roth DB, Alt FW (1997) Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 7:653–665

    Article  PubMed  CAS  Google Scholar 

  56. Taccioli GE, Amatucci AG, Beamish HJ, Gell D, Xiang XH, Torres Arzayus MI, Priestley A, Jackson SP, Marshak Rothstein A, Jeggo PA, Herrera VL (1998) Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 9:355–366

    Article  PubMed  CAS  Google Scholar 

  57. Ouyang H, Nussenzweig A, Kurimasa A, Soares VC, Li X, Cordon-Cardo C, Li W, Cheong N, Nussenzweig M, Iliakis G, Chen DJ, Li GC (1997) Ku70 is required for DNA repair but not for T cell antigen receptor gene recombination In vivo. J Exp Med 186:921–929

    Article  PubMed  CAS  Google Scholar 

  58. Gao Y, Chaudhuri J, Zhu C, Davidson L, Weaver DT, Alt FW (1998) A targeted DNA-PKcs-null mutation reveals DNA-PK-independent functions for KU in V(D)J recombination. Immunity 9:367–376

    Article  PubMed  CAS  Google Scholar 

  59. Glassner BJ, Weeda G, Allan JM, Broekhof JL, Carls NH, Donker I, Engelward BP, Hampson RJ, Hersmus R, Hickman MJ, Roth RB, Warren HB, Wu MM, Hoeijmakers JH, Samson LD (1999) DNA repair methyltransferase (Mgmt) knockout mice are sensitive to the lethal effects of chemotherapeutic alkylating agents. Mutagenesis 14:339–347

    Article  PubMed  CAS  Google Scholar 

  60. Nordstrand LM, Svärd J, Larsen E, Nilsen A, Ougland R, Furu K, Lien GF, Rognes T, Namekawa SH, Lee JT, Klungland A (2010) Mice lacking Alkbh1 display sex-ratio distortion and unilateral eye defects. PLoS One 5:e13827

    Article  PubMed  Google Scholar 

  61. Tsuzuki T, Sakumi K, Shiraishi A, Kawate H, Igarashi H, Iwakuma T, Tominaga Y, Zhang S, Shimizu S, Ishikawa T et al (1996) Targeted disruption of the DNA repair methyltransferase gene renders mice hypersensitive to alkylating agent. Carcinogenesis 17:1215–1220

    Article  PubMed  CAS  Google Scholar 

  62. Ringvoll J, Nordstrand LM, Vågbø CB, Talstad V, Reite K, Aas PA, Lauritzen KH, Liabakk NB, Bjørk A, Doughty RW, Falnes PØ, Krokan HE, Klungland A (2006) Repair deficient mice reveal mABH2 as the primary oxidative demethylase for repairing 1meA and 3meC lesions in DNA. EMBO J 25:2189–2198

    Article  PubMed  CAS  Google Scholar 

  63. Moynahan ME, Chiu JW, Koller BH, Jasin M (1999) Brca1 controls homology-directed repair. Mol Cell 4:511–518

    Article  PubMed  CAS  Google Scholar 

  64. Moynahan ME, Pierce AJ, Jasin M (2001) BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 7:263–272

    Article  PubMed  CAS  Google Scholar 

  65. King TA, Li W, Brogi E, Yee CJ, Gemignani ML, Olvera N, Levine DA, Norton L, Robson ME, Offit K, Borgen PI, Boyd J (2007) Heterogenic loss of the wild-type BRCA allele in human breast tumorigenesis. Ann Surgical Onc 14:2510–2518

    Article  Google Scholar 

  66. Liu CY, Flesken-Nikitin A, Li S, Zeng Y, Lee WH (1996) Inactivation of the mouse Brca1 gene leads to failure in the morphogenesis of the egg cylinder in early postimplantation development. Genes Dev 10:1835–1843

    Article  PubMed  CAS  Google Scholar 

  67. Gowen LC, Johnson BL, Latour AM, Sulik KK, Koller BH (1996) Brca1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nat Genet 12:191–194

    Article  PubMed  CAS  Google Scholar 

  68. Sharan SK, Morimatsu M, Albrecht U, Lim DS, Regel E, Dinh C, Sands A, Eichele G, Hasty P, Bradley A (1997) Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386:804–810

    Article  PubMed  CAS  Google Scholar 

  69. Suzuki A, de la Pompa JL, Hakem R, Elia A, Yoshida R, Mo R, Nishina H, Chuang T, Wakeham A, Itie A, Koo W, Billia P, Ho A, Fukumoto M, Hui CC, Mak TW (1997) Brca2 is required for embryonic cellular proliferation in the mouse. Genes Dev 11:1242–1252

    Article  PubMed  CAS  Google Scholar 

  70. Jeng YM, Cai-Ng S, Li A, Furuta S, Chew H, Chen PL, Lee EY, Lee WH (2007) Brca1 heterozygous mice have shortened life span and are prone to ovarian tumorigenesis with haploinsufficiency upon ionizing irradiation. Oncogene 26:6160–6166

    Article  PubMed  CAS  Google Scholar 

  71. Patel KJ, Yu VP, Lee H, Corcoran A, Thistlethwaite FC, Evans MJ, Colledge WH, Friedman LS, Ponder BA, Venkitaraman AR (1998) Involvement of Brca2 in DNA repair. Mol Cell 1:347–357

    Article  PubMed  CAS  Google Scholar 

  72. Kim M-K, Zitzmann S, Westermann F, Arnold K, Brouwers S, Schwab M, Savelyeva L (2004) Increased rates of spontaneous sister chromatid exchange in lymphocytes of BRCA2+/− carriers of familial breast cancer clusters. Cancer Lett 210:85–94

    Article  PubMed  CAS  Google Scholar 

  73. Kee Y, D’Andrea AD (2010) Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev 24:1680–1694

    Article  PubMed  CAS  Google Scholar 

  74. Rantakari P, Nikkila J, Jokela H, Ola R, Pylkas K, Lagerbohm H, Sainio K, Poutanen M, Winqvist R (2010) Inactivation of Palb2 gene leads to mesoderm differentiation defect and early embryonic lethality in mice. Hum Mol Genet 19:3021–3029

    Article  PubMed  CAS  Google Scholar 

  75. Houghtaling S, Timmers C, Noll M, Finegold MJ, Jones SN, Meyn MS, Grompe M (2003) Epithelial cancer in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Genes Dev 17:2021–2035

    Article  PubMed  CAS  Google Scholar 

  76. Bakker ST, van de Vrugt HJ, Rooimans MA, Oostra AB, Steltenpool J, Delzenne-Goette E, van der Wal A, van der Valk M, Joenje H, te Riele H, de Winter JP (2009) Fancm-deficient mice reveal unique features of Fanconi anemia complementation group M. Hum Mol Genet 18:3484–3495

    Article  PubMed  CAS  Google Scholar 

  77. Crossan GP, van der Weyden L, Rosado IV, Langevin F, Gaillard PH, McIntyre RE, Gallagher F, Kettunen MI, Lewis DY, Brindle K, Arends MJ, Adams DJ, Patel KJ (2011) Disruption of mouse Slx4, a regulator of structure-specific nucleases, phenocopies Fanconi anemia. Nat Genet 43:147–152

    Article  PubMed  CAS  Google Scholar 

  78. Bensimon A, Aebersold R, Shiloh Y (2011) Beyone ATM: The protein kinase landscape of the DNA damage response. Febs Lett 585:1625–1639

    Article  PubMed  CAS  Google Scholar 

  79. Lebel M, Leder P (1998) A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc Natl Acad Sci USA 95:13097–13102

    Article  PubMed  CAS  Google Scholar 

  80. Chester N, Kuo F, Kozak C, O’Hara CD, Leder P (1998) Stage-specific apoptosis, developmental delay, and embryonic lethality in mice homozygous for a targeted disruption in the murine Bloom’s syndrome gene. Genes Dev 12:3382–3393

    Article  PubMed  CAS  Google Scholar 

  81. Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS, Baltimore D (1996) Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 10:2411–2422

    Article  PubMed  CAS  Google Scholar 

  82. Fang Y, Tsao C–C, Goodman BK, Furumai R, Tirado CA, Abraham RT, Wang X-F (2004) ATR runctions as a gene dosage-dependent tumor suppressor on a mismatch repair-deficient background. EMBO J 23:3164–3174

    Article  PubMed  CAS  Google Scholar 

  83. Brown EJ, Baltimore D (2000) ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14:397–402

    PubMed  CAS  Google Scholar 

  84. Su F, Smilenov LB, Ludwig T, Zhou L, Zhu J, Zhou G, Hall EJ (2010) Hemizygosity for Atm and Brca1 influence the balance between cell transformation and apoptosis. Radiat Oncol 5:15

    Article  PubMed  Google Scholar 

Download references

Acknowldgements

This work is supported by a grant from the Ellison Medical Foundation [DCC].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane C. Cabelof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabelof, D.C. Haploinsufficiency in mouse models of DNA repair deficiency: modifiers of penetrance. Cell. Mol. Life Sci. 69, 727–740 (2012). https://doi.org/10.1007/s00018-011-0839-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0839-7

Keywords

Navigation