Skip to main content
Log in

Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet-Biedl syndrome proteins

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Primary cilia are nearly ubiquitous cellular appendages that provide important sensory and signaling functions. Ciliary dysfunction underlies numerous human diseases, collectively termed ciliopathies. Primary cilia have distinct functions on different cell types and these functions are defined by the signaling proteins that localize to the ciliary membrane. Neurons throughout the mammalian brain possess primary cilia upon which certain G protein-coupled receptors localize. Yet, the precise signaling proteins present on the vast majority of neuronal cilia are unknown. Here, we report that dopamine receptor 1 (D1) localizes to cilia on mouse central neurons, thereby implicating neuronal cilia in dopamine signaling. Interestingly, ciliary localization of D1 is dynamic, and the receptor rapidly translocates to and from cilia in response to environmental cues. Notably, the translocation of D1 from cilia requires proteins mutated in the ciliopathy Bardet-Biedl syndrome (BBS), and we find that one of the BBS proteins, Bbs5, specifically interacts with D1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–i
Fig. 2a–c
Fig. 3
Fig. 4a, b
Fig. 5a, b

Similar content being viewed by others

Abbreviations

BBS:

Bardet-Biedl syndrome

GPCR:

G protein-coupled receptor

D1:

Dopamine receptor 1

Mchr1:

Melanin-concentrating hormone receptor 1

Sstr3:

Somatostatin receptor 3

ACIII:

Type III adenylyl cyclase

IMCD:

Inner medullary collecting duct

i3:

Third intracellular

C-tail:

Carboxy terminal tail

References

  1. Berbari NF, O’Connor AK, Haycraft CJ, Yoder BK (2009) The primary cilium as a complex signaling center. Curr Biol 19:R526–R535

    Article  PubMed  CAS  Google Scholar 

  2. Christensen ST, Pedersen LB, Schneider L, Satir P (2007) Sensory cilia and integration of signal transduction in human health and disease. Traffic 8:97–109

    Article  PubMed  CAS  Google Scholar 

  3. Eggenschwiler JT, Anderson KV (2007) Cilia and developmental signaling. Annu Rev Cell Dev Biol 23:345–373

    Article  PubMed  CAS  Google Scholar 

  4. Han YG, Alvarez-Buylla A (2010) Role of primary cilia in brain development and cancer. Curr Opin Neurobiol 20:58–67

    Article  PubMed  CAS  Google Scholar 

  5. Handel M, Schulz S, Stanarius A, Schreff M, Erdtmann-Vourliotis M, Schmidt H, Wolf G, Hollt V (1999) Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience 89:909–926

    Article  PubMed  CAS  Google Scholar 

  6. Hamon M, Doucet E, Lefevre K, Miquel MC, Lanfumey L, Insausti R, Frechilla D, Del Rio J, Verge D (1999) Antibodies and antisense oligonucleotide for probing the distribution and putative functions of central 5-HT6 receptors. Neuropsychopharmacology 21:68S–76S

    PubMed  CAS  Google Scholar 

  7. Brailov I, Bancila M, Brisorgueil MJ, Miquel MC, Hamon M, Verge D (2000) Localization of 5-HT(6) receptors at the plasma membrane of neuronal cilia in the rat brain. Brain Res 872:271–275

    Article  PubMed  CAS  Google Scholar 

  8. Berbari NF, Johnson AD, Lewis JS, Askwith CC, Mykytyn K (2008) Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol Biol Cell 19:1540–1547

    Article  PubMed  CAS  Google Scholar 

  9. Berbari NF, Lewis JS, Bishop GA, Askwith CC, Mykytyn K (2008) Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc Natl Acad Sci USA 105:4242–4246

    Article  PubMed  CAS  Google Scholar 

  10. Tobin JL, Beales PL (2007) Bardet-Biedl syndrome: beyond the cilium. Pediatr Nephrol 22:926–936

    Article  PubMed  Google Scholar 

  11. Zaghloul NA, Katsanis N (2009) Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest 119:428–437

    Article  PubMed  CAS  Google Scholar 

  12. Jin H, White SR, Shida T, Schulz S, Aguiar M, Gygi SP, Bazan JF, Nachury MV (2010) The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141:1208–1219

    Article  PubMed  CAS  Google Scholar 

  13. Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peranen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK (2007) A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129:1201–1213

    Article  PubMed  CAS  Google Scholar 

  14. Handlon AL, Zhou H (2006) Melanin-concentrating hormone-1 receptor antagonists for the treatment of obesity. J Med Chem 49:4017–4022

    Article  PubMed  CAS  Google Scholar 

  15. Mykytyn K, Mullins RF, Andrews M, Chiang AP, Swiderski RE, Yang B, Braun T, Casavant T, Stone EM, Sheffield VC (2004) Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc Natl Acad Sci USA 101:8664–8669

    Article  PubMed  CAS  Google Scholar 

  16. Nishimura DY, Fath M, Mullins RF, Searby C, Andrews M, Davis R, Andorf JL, Mykytyn K, Swiderski RE, Yang B, Carmi R, Stone EM, Sheffield VC (2004) Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proc Natl Acad Sci USA 101:16588–16593

    Article  PubMed  CAS  Google Scholar 

  17. Berbari NF, Bishop GA, Askwith CC, Lewis JS, Mykytyn K (2007) Hippocampal neurons possess primary cilia in culture. J Neurosci Res 85:1095–1100

    Article  PubMed  CAS  Google Scholar 

  18. Gomes I, Filipovska J, Jordan BA, Devi LA (2002) Oligomerization of opioid receptors. Methods 27:358–365

    Article  PubMed  CAS  Google Scholar 

  19. Deretic D, Schmerl S, Hargrave PA, Arendt A, McDowell JH (1998) Regulation of sorting and post-Golgi trafficking of rhodopsin by its C-terminal sequence QVS(A)PA. Proc Natl Acad Sci USA 95:10620–10625

    Article  PubMed  CAS  Google Scholar 

  20. Green ES, Menz MD, LaVail MM, Flannery JG (2000) Characterization of rhodopsin mis-sorting and constitutive activation in a transgenic rat model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 41:1546–1553

    PubMed  CAS  Google Scholar 

  21. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  22. Marley A, von Zastrow M (2010) DISC1 regulates primary cilia that display specific dopamine receptors. PLoS One 5:e10902

    Article  PubMed  Google Scholar 

  23. Bishop GA, Berbari NF, Lewis JS, Mykytyn K (2007) Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J Comp Neurol 505:562–571

    Article  PubMed  Google Scholar 

  24. Brismar H, Asghar M, Carey RM, Greengard P, Aperia A (1998) Dopamine-induced recruitment of dopamine D1 receptors to the plasma membrane. Proc Natl Acad Sci USA 95:5573–5578

    Article  PubMed  CAS  Google Scholar 

  25. Trivedi M, Narkar VA, Hussain T, Lokhandwala MF (2004) Dopamine recruits D1A receptors to Na-K-ATPase-rich caveolar plasma membranes in rat renal proximal tubules. Am J Physiol Renal Physiol 287:F921–F931

    Article  PubMed  CAS  Google Scholar 

  26. Milenkovic L, Scott MP, Rohatgi R (2009) Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium. J Cell Biol 187:365–374

    Article  PubMed  CAS  Google Scholar 

  27. Wilson CW, Chen MH, Chuang PT (2009) Smoothened adopts multiple active and inactive conformations capable of trafficking to the primary cilium. PLoS One 4:e5182

    Article  PubMed  Google Scholar 

  28. Lechtreck KF, Johnson EC, Sakai T, Cochran D, Ballif BA, Rush J, Pazour GJ, Ikebe M, Witman GB (2009) The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J Cell Biol 187:1117–1132

    Article  PubMed  CAS  Google Scholar 

  29. Pedersen LB, Rosenbaum JL (2008) Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol 85:23–61

    Article  PubMed  CAS  Google Scholar 

  30. Rosenbaum JL, Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3:813–825

    Article  PubMed  CAS  Google Scholar 

  31. Scholey JM (2003) Intraflagellar transport. Annu Rev Cell Dev Biol 19:423–443

    Article  PubMed  CAS  Google Scholar 

  32. Follit JA, Tuft RA, Fogarty KE, Pazour GJ (2006) The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol Biol Cell 17:3781–3792

    Article  PubMed  CAS  Google Scholar 

  33. Qin H, Burnette DT, Bae YK, Forscher P, Barr MM, Rosenbaum JL (2005) Intraflagellar transport is required for the vectorial movement of TRPV channels in the ciliary membrane. Curr Biol 15:1695–1699

    Article  PubMed  CAS  Google Scholar 

  34. Ou G, Blacque OE, Snow JJ, Leroux MR, Scholey JM (2005) Functional coordination of intraflagellar transport motors. Nature 436:583–587

    Article  PubMed  CAS  Google Scholar 

  35. Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF (2005) Vertebrate Smoothened functions at the primary cilium. Nature 437:1018–1021

    Article  PubMed  CAS  Google Scholar 

  36. Rohatgi R, Milenkovic L, Scott MP (2007) Patched1 regulates Hedgehog signaling at the primary cilium. Science 317:372–376

    Article  PubMed  CAS  Google Scholar 

  37. Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK (2005) Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1:e53

    Article  PubMed  Google Scholar 

  38. Rashid AJ, So CH, Kong MM, Furtak T, El-Ghundi M, Cheng R, O’Dowd BF, George SR (2007) D1–D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci USA 104:654–659

    Article  PubMed  CAS  Google Scholar 

  39. LeDoux J (2007) The amygdala. Curr Biol 17:R868–R874

    Article  PubMed  CAS  Google Scholar 

  40. Phelps EA, LeDoux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48:175–187

    Article  PubMed  CAS  Google Scholar 

  41. Barnett S, Reilly S, Carr L, Ojo I, Beales PL, Charman T (2002) Behavioural phenotype of Bardet-Biedl syndrome. J Med Genet 39:e76

    Article  PubMed  CAS  Google Scholar 

  42. Eichers ER, Abd-El-Barr MM, Paylor R, Lewis RA, Bi W, Lin X, Meehan TP, Stockton DW, Wu SM, Lindsay E, Justice MJ, Beales PL, Katsanis N, Lupski JR (2006) Phenotypic characterization of Bbs4 null mice reveals age-dependent penetrance and variable expressivity. Hum Genet 120:211–226

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Joshua Stowell for technical assistance and David Sibley (NINDS) for providing D1 WT and KO brains. This work was supported in part by the Systems and Integrative Biology Training Grant T32 GM068412(J.G.) and R01 GM083120 from the NIH/National Institute of General Medical Sciences (K.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk Mykytyn.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domire, J.S., Green, J.A., Lee, K.G. et al. Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet-Biedl syndrome proteins. Cell. Mol. Life Sci. 68, 2951–2960 (2011). https://doi.org/10.1007/s00018-010-0603-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0603-4

Keywords

Navigation