Skip to main content

Advertisement

Log in

Protein arginine deiminase 4: a target for an epigenetic cancer therapy

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The recent approvals of anticancer therapeutic agents targeting the histone deacetylases and DNA methyltransferases have highlighted the important role that epigenetics plays in human diseases, and suggested that the factors controlling gene expression are novel drug targets. Protein arginine deiminase 4 (PAD4) is one such target because its effects on gene expression parallel those observed for the histone deacetylases. We demonstrated that F- and Cl-amidine, two potent PAD4 inhibitors, display micromolar cytotoxic effects towards several cancerous cell lines (HL-60, MCF7 and HT-29); no effect was observed in noncancerous lines (NIH 3T3 and HL-60 granulocytes). These compounds also induced the differentiation of HL-60 and HT29 cells. Finally, these compounds synergistically potentiated the cell killing effects of doxorubicin. Taken together, these findings suggest PAD4 inhibition as a novel epigenetic approach for the treatment of cancer, and suggest that F- and Cl-amidine are candidate therapeutic agents for this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PAD:

Protein Arginine Deiminase

HDAC:

Histone deacetylase

RA:

Rheumatoid arthritis

ER:

Estrogen receptor

TR:

Thyroid receptor

ATRA:

All trans retinoic acid

RAR:

Retinoic acid receptor

References

  1. Lyko F, Brown R (2005) DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst 97:1498–1506

    Article  CAS  PubMed  Google Scholar 

  2. Fischle W, Wang Y, Allis CD (2003) Binary switches and modification cassettes in histone biology and beyond. Nature 425:475–479

    Article  CAS  PubMed  Google Scholar 

  3. Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25:84–90

    Article  CAS  PubMed  Google Scholar 

  4. Jones JE, Causey CP, Knuckley B, Slack-Noyes JL, Thompson PR (2009) Protein arginine deiminase 4 (PAD4): Current understanding and future therapeutic potential. Curr Opin Drug Discov Devel 12:616–627

    CAS  PubMed  Google Scholar 

  5. Yao H, Li P, Venters BJ, Zheng S, Thompson PR, Pugh BF, Wang Y (2008) Histone Arg modifications and p53 regulate the expression of OKL38, a mediator of apoptosis. J Biol Chem 283:20060–20068

    Article  CAS  PubMed  Google Scholar 

  6. Li P, Yao H, Zhang Z, Li M, Luo Y, Thompson PR, Gilmour DS, Wang Y (2008) Regulation of p53 target gene expression by peptidylarginine deiminase 4. Mol Cell Biol 28:4745–4758

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y, Roeder RG, Clarke S, Stallcup MR, Allis CD, Coonrod SA (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306:279–283

    Article  CAS  PubMed  Google Scholar 

  8. Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ, Kouzarides T (2004) Histone deimination antagonizes arginine methylation. Cell 118:545–553

    Article  CAS  PubMed  Google Scholar 

  9. Chang X, Han J (2006) Expression of peptidylarginine deiminase type 4 (PAD4) in various tumors. Mol Carcinog 45:183–196

    Article  CAS  PubMed  Google Scholar 

  10. Chang X, Han J, Pang L, Zhao Y, Yang Y, Shen Z (2009) Increased PADI4 expression in blood and tissues of patients with malignant tumors. BMC Cancer 9:40

    Article  PubMed  Google Scholar 

  11. Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ (2003) PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 25:1106–1118

    Article  CAS  PubMed  Google Scholar 

  12. Masson-Bessiere C, Sebbag M, Girbal-Neuhauser E, Nogueira L, Vincent C, Senshu T, Serre G (2001) The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the alpha- and beta-chains of fibrin. J Immunol 166:4177–4184

    CAS  PubMed  Google Scholar 

  13. Maragoudakis ME, Tsopanoglou NE, Andriopoulou P (2002) Mechanism of thrombin-induced angiogenesis. Biochem Soc Trans 30:173–177

    Article  CAS  PubMed  Google Scholar 

  14. Wojtukiewicz MZ, Tang DG, Ciarelli JJ, Nelson KK, Walz DA, Diglio CA, Mammen EF, Honn KV (1993) Thrombin increases the metastatic potential of tumor cells. Int J Cancer 54:793–806

    Article  CAS  PubMed  Google Scholar 

  15. Luo Y, Arita K, Bhatia M, Knuckley B, Lee YH, Stallcup MR, Thompson PR (2006) Inhibitors and inactivators of protein arginine deiminase 4: functional and structural characterization. Biochemistry 45:11727–11736

    Article  CAS  PubMed  Google Scholar 

  16. Causey CP, Thompson PR (2008) An improved synthesis of haloaceteamidine-based inactivators of protein arginine deiminase 4 (PAD4). Tetrahedron Lett 49:4383–4385

    Article  CAS  PubMed  Google Scholar 

  17. Luo Y, Knuckley B, Lee YH, Stallcup MR, Thompson PR (2006) A fluoro-acetamidine based inactivator of protein arginine deiminase 4 (PAD4): design, synthesis, and in vitro and in vivo evaluation. J Am Chem Soc 128:1092–1093

    Article  CAS  PubMed  Google Scholar 

  18. Leatherbarrow RJ (2004) Grafit Ver 5.0. Erathicus Software, Staines

    Google Scholar 

  19. Yamada M, Mori M, Sugimura T (1981) Purification and characterization of small molecular weight myeloperoxidase from human promyelocytic leukemia HL-60 cells. Biochemistry 20:766–771

    Article  CAS  PubMed  Google Scholar 

  20. Dong S, Zhang Z, Takahara H (2007) Estrogen-enhanced peptidylarginine deiminase type IV gene (PADI4) expression in MCF-7 cells is mediated by estrogen receptor-alpha-promoted transfactors activator protein-1, nuclear factor-Y, and Sp1. Mol Endocrinol 21:1617–1629

    Article  CAS  PubMed  Google Scholar 

  21. Valeriote F, Lin H (1975) Synergistic interaction of anticancer agents: a cellular perspective. Cancer Chemother Rep 59:895–900

    CAS  PubMed  Google Scholar 

  22. Jonsson E, Fridborg H, Nygren P, Larsson R (1998) Synergistic interactions of combinations of topotecan with standard drugs in primary cultures of human tumor cells from patients. Eur J Clin Pharmacol 54:509–514

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L, Han H, Grigoryev SA, Allis CD, Coonrod SA (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184:205–213

    Article  CAS  PubMed  Google Scholar 

  24. Nakashima K, Hagiwara T, Ishigami A, Nagata S, Asaga H, Kuramoto M, Senshu T, Yamada M (1999) Molecular characterization of peptidylarginine deiminase in HL-60 cells induced by retinoic acid and 1alpha,25-dihydroxyvitamin D(3). J Biol Chem 274:27786–27792

    Article  CAS  PubMed  Google Scholar 

  25. Jiang H, Congleton J, Liu Q, Merchant P, Malavasi F, Lee HC, Hao Q, Yen A, Lin H (2009) Mechanism-based small molecule probes for labeling CD38 on live cells. J Am Chem Soc 131:1658–1659

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Zhao Y, Kauss MA, Spindel S, Lian H (2009) Akt regulates vitamin D3-induced leukemia cell functional differentiation via Raf/MEK/ERK MAPK signaling. Eur J Cell Biol 88:103–115

    Article  CAS  PubMed  Google Scholar 

  27. Zeng YX, el-Deiry WS (1996) Regulation of p21WAF1/CIP1 expression by p53-independent pathways. Oncogene 12:1557–1564

    CAS  PubMed  Google Scholar 

  28. Savoysky E, Yoshida K, Ohtomo T, Yamaguchi Y, Akamatsu K, Yamazaki T, Yoshida S, Tsuchiya M (1996) Down-regulation of telomerase activity is an early event in the differentiation of HL60 cells. Biochem Biophys Res Commun 226:329–334

    Article  CAS  PubMed  Google Scholar 

  29. Shankar S, Singh TR, Fandy TE, Luetrakul T, Ross DD, Srivastava RK (2005) Interactive effects of histone deacetylase inhibitors and TRAIL on apoptosis in human leukemia cells: involvement of both death receptor and mitochondrial pathways. Int J Mol Med 16:1125–1138

    CAS  PubMed  Google Scholar 

  30. Marks PA (2004) The mechanism of the anti-tumor activity of the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA). Cell Cycle 3:534–535

    Article  CAS  PubMed  Google Scholar 

  31. Barnard JA, Warwick G (1993) Butyrate rapidly induces growth inhibition and differentiation in HT-29 cells. Cell Growth Differ 4:495–501

    CAS  PubMed  Google Scholar 

  32. Wilson AJ, Byun DS, Popova N, Murray LB, L’Italien K, Sowa Y, Arango D, Velcich A, Augenlicht LH, Mariadason JM (2006) Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 281:13548–13558

    Article  CAS  PubMed  Google Scholar 

  33. Luong QT, O’Kelly J, Braunstein GD, Hershman JM, Koeffler HP (2006) Antitumor activity of suberoylanilide hydroxamic acid against thyroid cancer cell lines in vitro and in vivo. Clin Cancer Res 12:5570–5577

    Article  CAS  PubMed  Google Scholar 

  34. Kim MS, Blake M, Baek JH, Kohlhagen G, Pommier Y, Carrier F (2003) Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res 63:7291–7300

    CAS  PubMed  Google Scholar 

  35. Denis H, Deplus R, Putmans P, Yamada M, Metivier R, Fuks F (2009) Functional connection between deimination and deacetylation of histones. Mol Cell Biol 29:4982–4993

    Article  CAS  PubMed  Google Scholar 

  36. Luo Y, Knuckley B, Bhatia M, Thompson PR (2006) Activity based protein profiling reagents for protein arginine deiminase 4 (PAD4): synthesis and in vitro evaluation of a fluorescently-labeled probe. J Am Chem Soc 128:14468–14469

    Article  CAS  PubMed  Google Scholar 

  37. Asaga H, Nakashima K, Senshu T, Ishigami A, Yamada M (2001) Immunocytochemical localization of peptidylarginine deiminase in human eosinophils and neutrophils. J Leukoc Biol 70:46–51

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Hening Lin and Hong Jiang for the generous gift of Rh-6(F-araNAD), and Michael Wyatt, Franklin Berger and Lee Ferguson, respectively, for the generous gifts of the HT-29, NIH3T3, and MCF7 cells. We also thank Franklin Berger for providing critical comments on the manuscript. This work was supported by NIH grant GM079357 to PRT.

Conflicts of interest

The authors declare a conflict of interest. The University of South Carolina and P.R.T have a financial interest in F-amidine and Cl-amidine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Thompson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 217 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slack, J.L., Causey, C.P. & Thompson, P.R. Protein arginine deiminase 4: a target for an epigenetic cancer therapy. Cell. Mol. Life Sci. 68, 709–720 (2011). https://doi.org/10.1007/s00018-010-0480-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0480-x

Keywords

Navigation