Skip to main content

Advertisement

Log in

The current structural and functional understanding of APOBEC deaminases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The apolipoprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) family of cytidine deaminases has emerged as an intensively studied field as a result of their important biological functions. These enzymes are involved in lipid metabolism, antibody diversification, and the inhibition of retrotransposons, retroviruses, and some DNA viruses. The APOBEC proteins function in these roles by deaminating single-stranded (ss) DNA or RNA. There are two high-resolution crystal structures available for the APOBEC family, Apo2 and the C-terminal catalytic domain (CD2) of Apo3G or Apo3G-CD2 [Holden et al. (Nature 456:121–124, 2008); Prochnow et al. (Nature 445:447–451, 2007)]. Additionally, the structure of Apo3G-CD2 has also been determined using NMR [Chen et al. (Nature 452:116–119, 2008); Furukawa et al. (EMBO J 28:440–451, 2009); Harjes et al. (J Mol Biol, 2009)]. A detailed structural analysis of the APOBEC proteins and a comparison to other zinc-coordinating deaminases can facilitate our understanding of how APOBEC proteins bind nucleic acids, recognize substrates, and form oligomers. Here, we review the recent development of structural and functional studies that apply to Apo3G as well as the APOBEC deaminase family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Holden LG, Prochnow C, Chang PY, Bransteitter R, Chelico L, Sen U, Stevens RC, Goodman MF, Chen XS (2008) Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature 456:121–124

    PubMed  CAS  Google Scholar 

  2. Prochnow C, Bransteitter R, Klein MG, Goodman MF, Chen XS (2007) The APOBEC-2 crystal structure and functional implications for the deaminase AID. Nature 445:447–451

    PubMed  CAS  Google Scholar 

  3. Chen KM, Harjes E, Gross PJ, Fahmy A, Lu Y, Shindo K, Harris RS, Matsuo H (2008) Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature 452:116–119

    PubMed  CAS  Google Scholar 

  4. Furukawa A, Nagata T, Matsugami A, Habu Y, Sugiyama R, Hayashi F, Kobayashi N, Yokoyama S, Takaku H, Katahira M (2009) Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G. EMBO J 28:440–451

    PubMed  CAS  Google Scholar 

  5. Harjes E, Gross PJ, Chen KM, Lu Y, Shindo K, Nowarski R, Gross JD, Kotler M, Harris RS, Matsuo H (2009) An extended structure of the APOBEC3G catalytic domain suggests a unique holoenzyme model. J Mol Biol (in press)

  6. Jarmuz A, Clhester A, Bayliss J, Gisbourne J, Dunham I, Scott J, Navaratnam N (2002) An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79:285–296

    PubMed  CAS  Google Scholar 

  7. Navarro F, Bollman B, Chen H, Konig R, Yu Q, Chiles K, Landau NR (2005) Complementary function of the two catalytic domains of APOBEC3G. Virology 333:374–386

    PubMed  CAS  Google Scholar 

  8. Newman EN, Holmes RK, Craig HM, Klein KC, Lingappa JR, Malim MH, Sheehy AM (2005) Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Curr Biol 15:166–170

    PubMed  CAS  Google Scholar 

  9. Iwatani Y, Takeuchi H, Strebel K, Levin JG (2006) Biochemical activities of highly purified, catalytically active human APOBEC3G: correlation with antiviral effect. J Virol 80:5992–6002

    PubMed  CAS  Google Scholar 

  10. Liddament MT, Brown WL, Schumacher AJ, Harris RS (2004) APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol 14:1385–1391

    PubMed  CAS  Google Scholar 

  11. Bishop KN, Holmes RK, Sheehy AM, Davidson NO, Cho S, Malim MH (2004) Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr Biol 14:1392–1396

    PubMed  CAS  Google Scholar 

  12. Bogerd HP, Wiegand HL, Doehle BP, Cullen BR (2007) The intrinsic antiretroviral factor APOBEC3B contains two enzymatically active cytidine deaminase domains. Virology 364:486–493

    PubMed  CAS  Google Scholar 

  13. Navaratnam N, Morrison JR, Bhattacharya S, Patel D, Funahashi T, Giannoni F, Teng B, Davidson NO, Scott J (1993) The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase. J Biol Chem 28:20709–20712

    Google Scholar 

  14. Teng B, Burant CF, Davidson NO (1993) Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science 260:1816–1819

    PubMed  CAS  Google Scholar 

  15. Chester A, Scott J, Anant S, Navaratnam N (2000) RNA editing: cytidine to uridine conversion in apolipoprotein B mRNA. Biochim Biophys Acta 1494:1–13

    PubMed  CAS  Google Scholar 

  16. Petersen-Mahrt SK, Neuberger MS (2003) In vitro deamination of cytosine to uracil in single-stranded DNA by apolipoprotein B editing complex catalytic subunit 1 (APOBEC1). J Biol Chem 278:19583–19586

    PubMed  CAS  Google Scholar 

  17. Mehta A, Kinter MT, Sherman NE, Driscoll DM (2000) Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA. Mol Cell Biol 20:1846–1854

    PubMed  CAS  Google Scholar 

  18. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563

    PubMed  CAS  Google Scholar 

  19. Neuberger MS, Harris RS, Di Noia JM, Petersen-Mahrt SK (2003) Immunity through DNA deamination. Trends Biochem Sci 28:305–312

    PubMed  CAS  Google Scholar 

  20. Bransteitter R, Pham P, Scharff MD, Goodman MF (2003) Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci USA 100:4102–4107

    PubMed  CAS  Google Scholar 

  21. Langlois MA, Beale RCL, Conticello SG, Neuberger MS (2005) Mutational comparison of the single-domained APOBEC3C and double-domained APOBEC3F/G anti-retroviral cytidine deaminases providing insight into their DNA target site specificities. Nucleic Acids Res 33:1913–1923

    PubMed  CAS  Google Scholar 

  22. Pham P, Bransteitter R, Petruska J, Goodman MF (2003) Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424:103–107

    PubMed  CAS  Google Scholar 

  23. Peters A, Storb U (1996) Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity 4:57–65

    PubMed  CAS  Google Scholar 

  24. Imai K, Slupphaug G, Lee WI, Revy P, Nonoyama S, Catalan N, Yel L, Forveille M, Kavli B, Krokan HE, Ochs HD, Fischer A, Durandy A (2003) Human uracil–DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 4:1023–1028

    PubMed  CAS  Google Scholar 

  25. Schrader CE, Guikema JE, Wu X, Stavnezer J (2009) The roles of APE1, APE2, DNA polymerase beta and mismatch repair in creating S region DNA breaks during antibody class switch. Philos Trans R Soc Lond B 364:645–652

    CAS  Google Scholar 

  26. Revy P, Muto T, Levy Y, Greissmann F, Plebani A, Sanal O, Catalan N, Forveille M, Dufourcq-Labelouse R, Gennery A, Tezcan I, Ersoy F, Kayserili H, Ugazio AG, Brousse N, Muramatsu M, Notarangelo LD, Kinoshita K, Honjo T, Fischer A, Durandy A (2000) Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102:565–575

    PubMed  CAS  Google Scholar 

  27. Durandy A, Peron S, Fischer A (2006) Hyper-IgM syndromes. Curr Opin Rheumatol 18:369–376

    PubMed  CAS  Google Scholar 

  28. Minegishi Y, Lavoie A, Cunningham-Rundles C, Bedard P, Hebert J, Cote L, Dan K, Sedlak D, Buckley RH, Fischer A, Durandy A, Conley ME (2000) Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome. Clin Immunol 97:203–210

    PubMed  CAS  Google Scholar 

  29. Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418:646–650

    PubMed  CAS  Google Scholar 

  30. Conticello SG, Harris RS, Neuberger MS (2003) The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G. Curr Biol 13:2009–2013

    PubMed  CAS  Google Scholar 

  31. Marin M, Rose KM, Kozak SL, Kabat D (2003) HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med 9:1398–1403

    PubMed  CAS  Google Scholar 

  32. Sheehy AM, Gaddis NC, Malim MH (2003) The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9:1404–1407

    PubMed  CAS  Google Scholar 

  33. Stopak K, de Noronha C, Yonemoto W, Greene WC (2003) HIV-1 Vif blocks antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 12:591–601

    PubMed  CAS  Google Scholar 

  34. Yu X, Yu Y, Liu B, Luo K, Kong W, Mao P, Yu XF (2003) Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif–Cul5–SCF complex. Science 302:1056–1060

    PubMed  CAS  Google Scholar 

  35. Opi S, Kao S, Goila-Gaur R, Khan M, Miyagi E, Takeuchi H, Strebel K (2007) Human immunodeficiency virus type 1 Vif inhibits packaging and antiviral activity of a degradation-resistant APOBEC3G variant. J Virol 81:8236–8246

    PubMed  CAS  Google Scholar 

  36. Burnett A, Spearman P (2007) APOBEC3G multimers are recruited to the plasma membrane for packaging into human immunodeficiency virus type 1 virus-like particles in an RNA-dependent process requiring the nc basic linker. J Virol 81:5000–5013

    PubMed  CAS  Google Scholar 

  37. Alce TM, Popik W (2004) APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. J Biol Chem 279:34083–34086

    PubMed  CAS  Google Scholar 

  38. Cen S, Guo F, Niu M, Saadatmand J, Deflassieux J, Kleiman L (2004) The interaction between HIV-1 Gag and APOBEC3G. J Biol Chem 279:33177–33184

    PubMed  CAS  Google Scholar 

  39. Luo K, Lui B, Xiao Z, Yu Y, Yu X, Gorelick R, Yu XF (2004) Amino-terminal region of the human immunodeficiency virus type 1 nucleo-capsid is required for human APOBEC3G packaging. J Virol 78:11841–11852

    PubMed  CAS  Google Scholar 

  40. Khan MA, Kao S, Miyagi E, Takeuchi H, Goila-Gaur R, Opi S, Gipson CL, Parslow TG, Ly H, Strebel K (2005) Viral RNA is required for the association of APOBEC3G with human immunodeficiency virus type 1 nucleoprotein complexes. J Virol 79:5870–5874

    PubMed  CAS  Google Scholar 

  41. Zennou VD, Perez-Caballero D, Gottlinger H, Bieniasz PD (2004) APOBEC3G incorporation into human immunodeficiency virus type 1 particles. J Virol 78:12058–12061

    PubMed  CAS  Google Scholar 

  42. Scharfer A, Bogerd HP, Cullen BR (2004) Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor. Virology 328:163–168

    Google Scholar 

  43. Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, Watt IN, Neuberger MS, Malim MH (2003) DNA deamination mediates innate immunity to retroviral infection. Cell 113:803–809

    PubMed  CAS  Google Scholar 

  44. Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424:99–103

    PubMed  CAS  Google Scholar 

  45. Mariani R, Chen D, Schrofelbauer B, Navarro F, Konig R, Bollman B, Munk C, Nymark-McMahon H, Landau NR (2003) Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114:21–31

    PubMed  CAS  Google Scholar 

  46. Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L (2003) The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424:94–98

    PubMed  CAS  Google Scholar 

  47. Yu Q, Konig R, Pillai S, Chiles K, Kearney M, Palmer S, Richman D, Coffin JM, Landau NR (2004) Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol 11:435–442

    PubMed  CAS  Google Scholar 

  48. Suspene R, Sommer P, Henry M, Ferris S, Guetard D, Pochet S, Chester A, Navaratnam N, Wain-Hobson S, Vartanian JP (2004) APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. Nucleic Acids Res 32:2421–2429

    PubMed  CAS  Google Scholar 

  49. Mbisa JL, Barr R, Thomas JA, Vandegraaff N, Dorweiler IJ, Svarovskaia ES, Brown WL, Mansky LM, Gorelick RJ, Harris RS, Engelman A, Pathak VK (2007) Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit effects in plus-strand DNA transfer and integration. J Virol 81:7099–7110

    PubMed  CAS  Google Scholar 

  50. Luo K, Wang T, Liu B, Tian C, Xiao Z, Kappes J, Yu X (2007) Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation. J Virol 81:7238–7248

    PubMed  CAS  Google Scholar 

  51. Bishop KN, Verma M, Kim EY, Wolinsky SM, Malim MH (2008) APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog 4:e1000231. doi:10.1371/journal.ppat.1000231

    PubMed  Google Scholar 

  52. Holmes RK, Koning FA, Bishop KN, Malim MH (2007) APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation. Comparisons with APOBEC3G. J Biol Chem 282:2587–2595

    PubMed  CAS  Google Scholar 

  53. Iwatani Y, Chan DSB, Wang F, Maynard KS, Sugiura W, Gronenborn AM, Rouzina I, Williams MC, Musier-Forsyth K, Levin JG (2007) Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Res 35:7096–7108

    PubMed  CAS  Google Scholar 

  54. Guo F, Cen S, Niu M, Saadatmand J, Kleiman L (2006) Inhibition of tRNAlys-primed reverse transcription by human APOBEC3G during human immunodeficiency virus type 1 replication. J Virol 80:11710–11720

    PubMed  CAS  Google Scholar 

  55. Li XY, Guo F, Zhang L, Kleiman L, Cen S (2007) APOBEC3G inhibits DNA strand transfer during HIV-1 reverse transcription. J Biol Chem 282:32065–32074

    PubMed  CAS  Google Scholar 

  56. Gooch BD, Cullen BR (2008) Functional domain organization of human APOBEC3G. Virology 379:118–124

    PubMed  CAS  Google Scholar 

  57. Huthoff H, Autore F, Gallois-Montbrun S, Fraternali F, Malim MH (2009) RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1. PLoS Pathog 5:e1000330

    PubMed  Google Scholar 

  58. Miyagi E, Opi S, Takeuchi H, Khan M, Goila-Gaur R, Kao S, Strebel K (2007) Enzymatically active APOBEC3G is required for efficient inhibition of human immunodeficiency virus type 1. J Virol 81:13346–13353

    PubMed  CAS  Google Scholar 

  59. Schumacher AJ, Hache G, Macduff DA, Brown WL, Harris RS (2008) The DNA deaminase activity of human APOBEC3G is required for Ty1, MusD, and human immunodeficiency virus type 1 restriction. J Virol 82:2652–2660

    PubMed  CAS  Google Scholar 

  60. Doehle BP, Schafer A, Cullen BR (2005) Human APOBEC3B is a potent inhibitor of HIV-1 infectivity and is resistant to HIV-1 Vif. Virology 339:281–288

    PubMed  CAS  Google Scholar 

  61. Bourara K, Liegler TJ, Grant RM (2007) Target cell APOBEC3C can induce limited G-to-A mutation in HIV-1. PLoS Pathog 3:1477–1485

    PubMed  CAS  Google Scholar 

  62. Dang Y, Wang X, Esselman WJ, Zheng YH (2006) Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family. J Virol 80:10522–10533

    PubMed  CAS  Google Scholar 

  63. Noguchi C, Ishino H, Tsuge M, Fujimoto Y, Imamura M, Takahashi S, Chayama K (2005) G to A hypermutation of hepatitis B virus. Hepatology 41:626–633

    PubMed  CAS  Google Scholar 

  64. Rosler C, Kock J, Kann M, Malim MH, Blum HE, Baumert TF, von Weizacker F (2005) APOBEC-mediated interference with hepadnavirus production. Hepatology 42:309–310

    Google Scholar 

  65. Kock J, Blum HE (2008) Hypermutation of hepatitis B virus genomes by APOBEC3G, APOBEC3C and APOBEC3H. J Gen Virol 89:1184–1191

    PubMed  Google Scholar 

  66. Suspene R, Guetard D, Henry M, Sommer P, Wain-Hobson S, Vartanian JP (2005) Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. Proc Natl Acad Sci USA 102:8321–8326

    PubMed  CAS  Google Scholar 

  67. Turelli P, Mangeat B, Jost S, Vianin S, Trono D (2004) Inhibition of hepatitis B virus replication by APOBEC3G. Science 303:1829

    PubMed  Google Scholar 

  68. Chen H, Lilley CE, Yu Q, Lee DV, Chou J, Narvaiza I, Landau NR, Weitzman MD (2006) APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr Biol 16:480–485

    PubMed  CAS  Google Scholar 

  69. Vartanian J, Guetard D, Henry M, Wain-Hobson S (2008) Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science 320:230–233

    PubMed  CAS  Google Scholar 

  70. Chiu YL, Greene WC (2009) APOBEC3G: an intracellular centurion. Philos Trans R Soc Lond B Biol Sci 364:689–703

    PubMed  CAS  Google Scholar 

  71. Okazaki IM, Hiai H, Kakazu N, Yamada S, Muramatsu M, Kinoshita K, Honjo T (2003) Constitutive expression of AID leads to tumorigenesis. J Exp Med 197:1173–1181

    PubMed  CAS  Google Scholar 

  72. Kou T, Marusawa H, Kinoshita K, Endo Y, Okazaki IM, Ueda Y, Kodama Y, Haga H, Ikai I, Chiba T (2007) Expression of activation-induced cytidine deaminase in human hepatocytes during hepatocarcinogenesis. Int J Cancer 120:469–476

    PubMed  CAS  Google Scholar 

  73. Komori J, Marusawa H, Machimoto T, Endo Y, Kinoshita K, Kou T, Haga H, Ikai I, Uemoto S, Chiba T (2008) Activation-induced cytidine deaminase links bile duct inflammation to human cholangiocarcinoma. Hepatology 47:888–896

    PubMed  CAS  Google Scholar 

  74. Longerich S, Orelli BJ, Martin RW, Bishop DK, Storb U (2008) Brca1 in immunoglobulin gene conversion and somatic hypermutation. DNA Repair (Amst) 7:253–266

    CAS  Google Scholar 

  75. Marusawa H (2008) Aberrant AID expression and human cancer development. Int J Biochem Cell Biol 40:1399–1402

    PubMed  CAS  Google Scholar 

  76. Matsumoto Y, Marusawa H, Kinoshita K, Endo Y, Kou T, Morisawa T, Azuma T, Okazaki IM, Honjo T, Chiba T (2007) Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat Med 13:470–476

    PubMed  CAS  Google Scholar 

  77. Morisawa T, Marusawa H, Ueda Y, Iwai A, Okazaki IM, Honjo T, Chiba T (2008) Organ-specific profiles of genetic changes in cancers caused by activation-induced cytidine deaminase expression. Int J Cancer 123:2735–2740

    PubMed  CAS  Google Scholar 

  78. Conticello SG, Langlois MA, Yang Z, Neuberger MS (2007) DNA deamination in immunity: AID in the context of its APOBEC relatives. Adv Immunol 94:37–73

    PubMed  CAS  Google Scholar 

  79. Betts L, Xiang S, Short SA, Wolfenden R, Carter CW (1994) Cytidine deaminase. The 2.3 Å crystal structure of an enzyme: transition-state analog complex. Curr Biol 235:635–656

    CAS  Google Scholar 

  80. Navaratnam N, Fujino T, Bayliss J, Jarmuz A, How A, Richardson N, Somasekaram A, Bhattacharya S, Carter C, Scott J (1998) Escherichia coli cytidine deaminase provides a molecular model for ApoB RNA editing and a mechanism for RNA substrate recognition. J Mol Biol 275:695–714

    PubMed  CAS  Google Scholar 

  81. Wedekind JE, Dance GS, Sowden MP, Smith HC (2003) Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet 19:207–216

    PubMed  CAS  Google Scholar 

  82. Teh AH, Kimura M, Yamamoto M, Tanaka N, Yamaguchi I, Kumasaka T (2006) The 1.48 Å resolution crystal structure of the homotetrameric cytidine deaminase from mouse. Biochemistry (Mosc) 45(782):5–7833

    Google Scholar 

  83. Chung SJ, Fromme JC, Verdine GL (2005) Structure of human cytidine deaminase bound to a potent inhibitor. J Med Chem 48:658–660

    PubMed  CAS  Google Scholar 

  84. Suspene R, Rusniok C, Vartanian JP, Wain-Hobson S (2006) Twin gradients in APOBEC3 edited HIV-1 DNA reflect the dynamics of lentiviral replication. Nucleic Acids Res 34:4677–4684

    PubMed  CAS  Google Scholar 

  85. Chelico L, Pham P, Calabrese P, Goodman MF (2006) APOBEC3G DNA deaminase acts processively 3′ → 5′ on single-stranded DNA. Nat Struct Mol Biol 13:392–399

    PubMed  CAS  Google Scholar 

  86. Chelico L, Goodman MF (2008) A model for oligomeric regulation of APOBEC3G cytosine deaminase-dependent restriction of HIV. J Biol Chem 283:13780–13791

    PubMed  CAS  Google Scholar 

  87. Chelico L, Pham P, Goodman MF (2009) Mechanisms of APOBEC3G-catalyzed processive deamination of deoxycytidine on single-stranded DNA. Nat Struct Mol Biol 16:454–455; author reply 455–456

    PubMed  CAS  Google Scholar 

  88. Nowarski R, Britan-Rosich E, Shiloach T, Kotler M (2008) Hypermutation by intersegmental transfer of APOBEC3G cytidine deaminase. Nat Struct Mol Biol 15:1059–1066

    PubMed  CAS  Google Scholar 

  89. Rausch JW, Chelico L, Goodman MF, Le Grice SF (2009) Dissecting APOBEC3G substrate specificity by nucleoside analog interference. J Biol Chem 284:7047–7058

    PubMed  CAS  Google Scholar 

  90. Conticello SG, Langlois MA, Neuberger MS (2007) Insights into DNA deaminases. Nat Struct Mol Biol 14:7–9

    PubMed  CAS  Google Scholar 

  91. Losey HC, Ruthenburg AJ, Verdine GL (2006) Crystal structure of Staphylococcus aureus tRNA adenosine deaminase TadA in complex with RNA. Nat Struct Mol Biol 13:153–159

    PubMed  CAS  Google Scholar 

  92. Basu U, Franklin A, Alt FW (2009) Post-translational regulation of activation-induced cytidine deaminase. Philos Trans R Soc Lond B 364:667–673

    CAS  Google Scholar 

  93. Zhang KL, Mangeat B, Ortiz M, Zoete V, Trono D, Telenti A, Michielin O (2007) Model structure of human APOBEC3G. PLoS ONE 2:e378

    PubMed  Google Scholar 

  94. Bogerd HP, Doehle BP, Wiegand HL, Cullen BR (2004) A single amino acid difference in the host APBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc Natl Acad Sci USA 101:3770–3774

    PubMed  CAS  Google Scholar 

  95. Mangeat B, Turelli P, Liao S, Trono D (2004) a single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. J Biol Chem 15:14481–14483

    Google Scholar 

  96. Schrofelbauer B, Chen D, Landau NR (2004) A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc Natl Acad Sci USA 101:3927–3932

    PubMed  Google Scholar 

  97. Huthoff H, Malim MH (2007) Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and virion encapsidation. J Virol 81:3807–3815

    PubMed  CAS  Google Scholar 

  98. Zhang L, Saddatmand J, Li X, Guo F, Niu M, Jiang J, Kleiman L, Cen S (2007) Function analysis of sequences in human APOBEC3G involved in Vif-mediated degradation. Virology 370:113–121

    PubMed  Google Scholar 

  99. Simon V, Zennou VD, Murray D, Huang Y, Ho DD, Bieniasz PD (2005) Natrual variation in Vif: differential impact on APOBEC3G/3F and a potential role in HIV-1 diversification. PLoS Pathog 1:e6

    PubMed  Google Scholar 

  100. Tian C, Yu X, Zhang W, Wang T, Xu R, Yu XF (2006) Differential requirement for conserved tryptophans in human immunodeficiency virus type 1 Vif for the selective suppression of APOBEC3G and APOBEC3F. J Virol 80:3112–3115

    PubMed  CAS  Google Scholar 

  101. Liu B, Sarkis PT, Luo K, Yu Y, Yu XF (2005) Regulation of Apobec3F and human immunodeficiency virus type 1 Vif by Vif-Cul5-ElonB/C E3 ubiquitin ligase. J Virol 79:9579–9587

    PubMed  CAS  Google Scholar 

  102. Russell RA, Pathak VK (2007) Identification of two distinct human immunodeficiency virus type 1 Vif determinants critical for interactions with human APOBEC3G and APOBEC3F. J Virol 81:8201–8210

    PubMed  CAS  Google Scholar 

  103. Marin M, Golem S, Rose KM, Kozak SL, Kabat D (2008) Human immunodeficiency virus type 1 Vif functionally interacts with diverse APOBEC3 cytidine deaminases and moves with them between cytoplasmic sites of mRNA metabolism. J Virol 82:987–998

    PubMed  CAS  Google Scholar 

  104. Wedekind JE, Gillilan R, Janda A, Krucinska J, Salter JD, Bennett RP, Raina J, Smith HC (2006) Nanostructures of APOBEC3G support a hierarchical assembly model of high molecular ribonucleoprotein particles from dimeric subunits. J Biol Chem 281:38122–38126

    PubMed  CAS  Google Scholar 

  105. Bennett RP, Salter JD, Liu X, Wedekind JE, Smith HC (2008) APOBEC3G subunits self-associate via the C-terminal deaminase domain. J Biol Chem 283:33329–33336

    PubMed  CAS  Google Scholar 

  106. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    PubMed  CAS  Google Scholar 

  107. DeLano WL (2002) The PyMOL molecular graphics system. DeLano, San Carlos

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Institutes of Health grant R01GM087986.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojiang S. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bransteitter, R., Prochnow, C. & Chen, X.S. The current structural and functional understanding of APOBEC deaminases. Cell. Mol. Life Sci. 66, 3137–3147 (2009). https://doi.org/10.1007/s00018-009-0070-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0070-y

Keywords

Navigation