Skip to main content

Advertisement

Log in

Application of Aptamers for Targeted Therapeutics

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Aptamers are short, single-stranded oligonucleotides that are isolated through a process termed systematic evolution of ligands by exponential enrichment. With the advent of cell-based selection technology, aptamers can be selected to bind protein targets that are expressed on the cell surface. These aptamers demonstrate excellent specificity and high affinity toward their target proteins and are often internalized upon binding to their targets. This has opened up the possibility of using aptamers for cell-specific targeted drug delivery. In this review, we will discuss cell-surface protein targets, the aptamers that bind them, and their applications for targeted therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adler A, Forster N, Homann M et al (2008) Post-SELEX chemical optimization of a trypanosome-specific RNA aptamer. Comb Chem High Throughput Screen 11:16–23

    Article  PubMed  CAS  Google Scholar 

  • Alexis F, Pridgen E, Molnar LK et al (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515

    Article  PubMed  CAS  Google Scholar 

  • Aravind A, Jeyamohan P, Nair R et al (2012) AS1411 aptamer tagged PLGA–lecithin–PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol Bioeng 109:2920–2931

    Article  PubMed  CAS  Google Scholar 

  • Bagalkot V, Zhang L, Levy-Nissenbaum E et al (2007) Quantum dot–aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070

    Article  PubMed  CAS  Google Scholar 

  • Barciszewski J, Medgaard M, Koch T et al (2009) Locked nucleic acid aptamers. Methods Mol Biol 535:165–186

    Article  PubMed  CAS  Google Scholar 

  • Bates PJ, Kahlon JB, Thomas SD et al (1999) Antiproliferative activity of G-rich oligonucleotides correlates with protein binding. J Biol Chem 274:26369–26377

    Article  PubMed  CAS  Google Scholar 

  • Bates PJ, Laber DA, Miller DM et al (2009) Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 86:151–164

    Article  PubMed  CAS  Google Scholar 

  • Bayrac AT, Sefah K, Parekh P et al (2011) In vitro selection of DNA aptamers to glioblastoma multiforme. ACS Chem Neurosci 2:175–181

    Article  PubMed  CAS  Google Scholar 

  • Becker RC, Rusconi C, Sullenger B (2005) Nucleic acid aptamers in therapeutic anticoagulation. Technology, development and clinical application. Thromb Haemost 93:1014–1020

    PubMed  CAS  Google Scholar 

  • Becker RC, Oney S, Becker KC et al (2007) Nucleic acid aptamers and their complimentary antidotes. Entering an era of antithrombotic pharmacobiologic therapy. Hamostaseologie 27:378–382

    PubMed  CAS  Google Scholar 

  • Berger EA, Doms RW, Fenyo EM et al (1998) A new classification for HIV-1. Nature 391:240

    Article  PubMed  CAS  Google Scholar 

  • Bombardelli L, Cavallaro U (2010) Immunoglobulin-like cell adhesion molecules: novel signaling players in epithelial ovarian cancer. Int J Biochem Cell Biol 42:590–594

    Article  PubMed  CAS  Google Scholar 

  • Borkowski S, Dinkelborg LM (2006) Aptamers for in vivo imaging. In: Klussmann S (ed) The aptamer handbook: functional oligonucleotides and their applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 343–362

    Chapter  Google Scholar 

  • Bunka DH, Platonova O, Stockley PG (2010) Development of aptamer therapeutics. Curr Opin Pharmacol 10:557–562

    Article  PubMed  CAS  Google Scholar 

  • Cambier JC, Campbell KS (1992) Membrane immunoglobulin and its accomplices: new lessons from an old receptor. FASEB J 6:3207–3217

    PubMed  CAS  Google Scholar 

  • Cerchia L, Esposito CL, Camorani S et al (2012) Targeting Axl with an high-affinity inhibitory aptamer. Mol Ther 20:2291–2303

    Article  PubMed  CAS  Google Scholar 

  • Chelliserrykattil J, Ellington AD (2004) Evolution of a T7 RNA polymerase variant that transcribes 2′-O-methyl RNA. Nat Biotechnol 22:1155–1160

    Article  PubMed  CAS  Google Scholar 

  • Chen CH, Dellamaggiore KR, Ouellette CP et al (2008) Aptamer-based endocytosis of a lysosomal enzyme. Proc Natl Acad Sci USA 105:15908–15913

    Article  PubMed  CAS  Google Scholar 

  • Cho HS, Dong Z, Pauletti GM et al (2010) Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: a multifunctional nanocarrier system for cancer diagnosis and treatment. ACS Nano 4:5398–5404

    Article  PubMed  CAS  Google Scholar 

  • Chu TC, Marks JW 3rd, Lavery LA et al (2006a) Aptamer:toxin conjugates that specifically target prostate tumor cells. Cancer Res 66:5989–5992

    Article  PubMed  CAS  Google Scholar 

  • Chu TC, Twu KY, Ellington AD et al (2006b) Aptamer mediated siRNA delivery. Nucleic Acids Res 34:e73

    Article  PubMed  CAS  Google Scholar 

  • Cohen C, Forzan M, Sproat B et al (2008) An aptamer that neutralizes R5 strains of HIV-1 binds to core residues of gp120 in the CCR5 binding site. Virology 381:46–54

    Article  PubMed  CAS  Google Scholar 

  • Dalgleish AG, Beverley PC, Clapham PR et al (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–767

    Article  PubMed  CAS  Google Scholar 

  • Daniels DA, Chen H, Hicke BJ et al (2003) A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci USA 100:15416–15421

    Article  PubMed  CAS  Google Scholar 

  • Dassie JP, Liu XY, Thomas GS et al (2009) Systemic administration of optimized aptamer–siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 27:839–849

    Article  PubMed  CAS  Google Scholar 

  • Derenzini M, Sirri V, Trere D et al (1995) The quantity of nucleolar proteins nucleolin and protein B23 is related to cell doubling time in human cancer cells. Lab Invest 73:497–502

    PubMed  CAS  Google Scholar 

  • Dey AK, Griffiths C, Lea SM et al (2005a) Structural characterization of an anti-gp120 RNA aptamer that neutralizes R5 strains of HIV-1. RNA 11:873–884

    Article  PubMed  CAS  Google Scholar 

  • Dey AK, Khati M, Tang M et al (2005b) An aptamer that neutralizes R5 strains of human immunodeficiency virus type 1 blocks gp120–CCR5 interaction. J Virol 79:13806–13810

    Article  PubMed  CAS  Google Scholar 

  • Dhar S, Gu FX, Langer R et al (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA 105:17356–17361

    Article  PubMed  CAS  Google Scholar 

  • Dhar S, Kolishetti N, Lippard SJ et al (2011) Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci USA 108:1850–1855

    Article  PubMed  CAS  Google Scholar 

  • Ditzler MA, Bose D, Shkriabai N et al (2011) Broad-spectrum aptamer inhibitors of HIV reverse transcriptase closely mimic natural substrates. Nucleic Acids Res 39:8237–8247

    Article  PubMed  CAS  Google Scholar 

  • Doudna JA, Cech TR, Sullenger BA (1995) Selection of an RNA molecule that mimics a major autoantigenic epitope of human insulin receptor. Proc Natl Acad Sci USA 92:2355–2359

    Article  PubMed  CAS  Google Scholar 

  • Duyster J, Bai RY, Morris SW (2001) Translocations involving anaplastic lymphoma kinase (ALK). Oncogene 20:5623–5637

    Article  PubMed  CAS  Google Scholar 

  • Eaton BE, Gold L, Zichi DA (1995) Let’s get specific: the relationship between specificity and affinity. Chem Biol 2:633–638

    Article  PubMed  CAS  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  PubMed  CAS  Google Scholar 

  • Esposito CL, Passaro D, Longobardo I et al (2011) A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death. PLoS ONE 6:e24071

    Article  PubMed  CAS  Google Scholar 

  • Eulberg D, Jarosch F, Vonhoff S et al (2006) Spiegelmers for therapeutic applications—use of chiral principles in evolutionary selection techniques. In: Klussmann S (ed) The aptamer handbook: functional oligonucleotides and their applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 417–442

    Chapter  Google Scholar 

  • Fabiilli ML, Haworth KJ, Sebastian IE et al (2010) Delivery of chlorambucil using an acoustically triggered perfluoropentane emulsion. Ultrasound Med Biol 36:1364–1375

    Article  PubMed  Google Scholar 

  • Farokhzad OC, Cheng J, Teply BA et al (2006a) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 103:6315–6320

    Article  PubMed  CAS  Google Scholar 

  • Farokhzad OC, Karp JM, Langer R (2006b) Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv 3:311–324

    Article  PubMed  CAS  Google Scholar 

  • Ferreira CS, Matthews CS, Missailidis S (2006) DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol 27:289–301

    Article  PubMed  CAS  Google Scholar 

  • Ferreira CS, Cheung MC, Missailidis S et al (2009) Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res 37:866–876

    Article  PubMed  CAS  Google Scholar 

  • Fickert H, Fransson IG, Hahn U (2006) Aptamers to small molecules. In: Klussmann S (ed) The aptamer handbook: functional oligonucleotides and their applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 94–115

    Chapter  Google Scholar 

  • Fitzwater T, Polisky B (1996) A SELEX primer. Methods Enzymol 267:275–301

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42:1097–1107

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Qian J, Cao S et al (2012a) Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials 33:5115–5123

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Qian J, Yang Z et al (2012b) Whole-cell SELEX aptamer-functionalised poly(ethyleneglycol)-poly(epsilon-caprolactone) nanoparticles for enhanced targeted glioblastoma therapy. Biomaterials 33:6264–6272

    Article  PubMed  CAS  Google Scholar 

  • Gendler SJ (2001) MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia 6:339–353

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A, Heston WD (2004) Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem 91:528–539

    Article  PubMed  CAS  Google Scholar 

  • Ginisty H, Amalric F, Bouvet P (1998) Nucleolin functions in the first step of ribosomal RNA processing. EMBO J 17:1476–1486

    Article  PubMed  CAS  Google Scholar 

  • Ginisty H, Sicard H, Roger B et al (1999) Structure and functions of nucleolin. J Cell Sci 112(Pt 6):761–772

    PubMed  CAS  Google Scholar 

  • Gold L, Polisky B, Uhlenbeck O et al (1995) Diversity of oligonucleotide functions. Annu Rev Biochem 64:763–797

    Article  PubMed  CAS  Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Gao X, Su L et al (2011) Aptamer-functionalized PEG–PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32:8010–8020

    Article  PubMed  CAS  Google Scholar 

  • Hicke BJ, Marion C, Chang YF et al (2001) Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem 276:48644–48654

    Article  PubMed  CAS  Google Scholar 

  • Hicke BJ, Stephens AW, Gould T et al (2006) Tumor targeting by an aptamer. J Nucl Med 47:668–678

    PubMed  CAS  Google Scholar 

  • Hovanessian AG, Soundaramourty C, El Khoury D et al (2010) Surface expressed nucleolin is constantly induced in tumor cells to mediate calcium-dependent ligand internalization. PLoS ONE 5:e15787

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Duan J, Zhan Q et al (2012) Novel MUC1 aptamer selectively delivers cytotoxic agent to cancer cells in vitro. PLoS ONE 7:e31970

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Shi H, Zhou H et al (2006) The angiogenic function of nucleolin is mediated by vascular endothelial growth factor and nonmuscle myosin. Blood 107:3564–3571

    Article  PubMed  CAS  Google Scholar 

  • Huang YF, Shangguan D, Liu H et al (2009) Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. ChemBioChem 10:862–868

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Xu JS, Xu RX (2010) Heat-sensitive microbubbles for intraoperative assessment of cancer ablation margins. Biomaterials 31:1278–1286

    Article  PubMed  CAS  Google Scholar 

  • Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341–354

    Article  PubMed  CAS  Google Scholar 

  • Ireson CR, Kelland LR (2006) Discovery and development of anticancer aptamers. Mol Cancer Ther 5:2957–2962

    Article  PubMed  CAS  Google Scholar 

  • Jing N, Rando RF, Pommier Y et al (1997) Ion selective folding of loop domains in a potent anti-HIV oligonucleotide. Biochemistry 36:12498–12505

    Article  PubMed  CAS  Google Scholar 

  • Joseph LF, Ezhevsky S, Scott DW (1995) Lymphoma models for B-cell activation and tolerance: anti-immunoglobulin M treatment induces growth arrest by preventing the formation of an active kinase complex which phosphorylates retinoblastoma gene product in G1. Cell Growth Differ 6:51–57

    PubMed  CAS  Google Scholar 

  • Kang H, O’Donoghue MB, Liu H et al (2010) A liposome-based nanostructure for aptamer directed delivery. Chem Commun 46:249–251

    Article  CAS  Google Scholar 

  • Kang H, Liu H, Zhang X et al (2011a) Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy. Langmuir 27:399–408

    Article  PubMed  CAS  Google Scholar 

  • Kang H, Trondoli AC, Zhu G et al (2011b) Near-infrared light-responsive core-shell nanogels for targeted drug delivery. ACS Nano 5:5094–5099

    Article  PubMed  CAS  Google Scholar 

  • Keefe AD, Cload ST (2008) SELEX with modified nucleotides. Curr Opin Chem Biol 12:448–456

    Article  PubMed  CAS  Google Scholar 

  • Khati M, Schuman M, Ibrahim J et al (2003) Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2′F-RNA aptamers. J Virol 77:12692–12698

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Jeong YY, Jon S (2010a) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4:3689–3696

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Jung Y, Choi H et al (2010b) Prostate cancer cell death produced by the co-delivery of Bcl-xL shRNA and doxorubicin using an aptamer-conjugated polyplex. Biomaterials 31:4592–4599

    Article  PubMed  CAS  Google Scholar 

  • Kim JK, Choi KJ, Lee M et al (2012) Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials 33:207–217

    Article  PubMed  CAS  Google Scholar 

  • Kotula JW, Pratico ED, Ming X et al (2012) Aptamer-mediated delivery of splice-switching oligonucleotides to the nuclei of cancer cells. Nucleic Acid Ther 22:187–195

    PubMed  CAS  Google Scholar 

  • Kurosaki T, Higuchi N, Kawakami S et al (2012) Self-assemble gene delivery system for molecular targeting using nucleic acid aptamer. Gene 491:205–209

    Article  PubMed  CAS  Google Scholar 

  • Kutok JL, Aster JC (2002) Molecular biology of anaplastic lymphoma kinase-positive anaplastic large-cell lymphoma. J Clin Oncol 20:3691–3702

    Article  PubMed  CAS  Google Scholar 

  • Lai YT, Destefano JJ (2012) DNA aptamers to human immunodeficiency virus reverse transcriptase selected by a primer-free SELEX method: characterization and comparison with other aptamers. Nucleic Acid Ther 22:162–176

    PubMed  CAS  Google Scholar 

  • Lee IH, An S, Yu MK et al (2011) Targeted chemoimmunotherapy using drug-loaded aptamer–dendrimer bioconjugates. J Control Release 155:435–441

    Article  PubMed  CAS  Google Scholar 

  • Li N, Larson T, Nguyen HH et al (2010) Directed evolution of gold nanoparticle delivery to cells. Chem Commun 46:392–394

    Article  CAS  Google Scholar 

  • Li J, Feng L, Fan L et al (2011a) Targeting the brain with PEG–PLGA nanoparticles modified with phage-displayed peptides. Biomaterials 32:4943–4950

    Article  PubMed  CAS  Google Scholar 

  • Li N, Nguyen HH, Byrom M et al (2011b) Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS ONE 6:e20299

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Moy P, Kim S et al (1997) Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res 57:3629–3634

    PubMed  CAS  Google Scholar 

  • Liu J, Liu H, Kang H et al (2012) Aptamer-incorporated hydrogels for visual detection, controlled drug release, and targeted cancer therapy. Anal Bioanal Chem 402:187–194

    Article  PubMed  CAS  Google Scholar 

  • Long SB, Long MB, White RR et al (2008) Crystal structure of an RNA aptamer bound to thrombin. RNA 14:2504–2512

    Article  PubMed  CAS  Google Scholar 

  • Lorenz C, Schroeder R (2006) Aptamers to antibiotics. In: Klussmann S (ed) The aptamer handbook: functional oligonucleotides and their applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 116–130

    Chapter  Google Scholar 

  • Lupold SE, Hicke BJ, Lin Y et al (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–4033

    PubMed  CAS  Google Scholar 

  • Mackie EJ (1997) Molecules in focus: tenascin-C. Int J Biochem Cell Biol 29:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Mallikaratchy P, Tang Z, Kwame S et al (2007) Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s lymphoma cells. Mol Cell Proteomics 6:2230–2238

    Article  PubMed  CAS  Google Scholar 

  • Mallikaratchy P, Tang Z, Tan W (2008) Cell specific aptamer-photosensitizer conjugates as a molecular tool in photodynamic therapy. Chem Med Chem 3:425–428

    PubMed  CAS  Google Scholar 

  • Mallikaratchy PR, Ruggiero A, Gardner JR et al (2011) A multivalent DNA aptamer specific for the B-cell receptor on human lymphoma and leukemia. Nucleic Acids Res 39:2458–2469

    Article  PubMed  CAS  Google Scholar 

  • McNamara JO 2nd, Andrechek ER, Wang Y et al (2006) Cell type-specific delivery of siRNAs with aptamer–siRNA chimeras. Nat Biotechnol 24:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Melikyan GB, Markosyan RM, Hemmati H et al (2000) Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J Cell Biol 151:413–423

    Article  PubMed  CAS  Google Scholar 

  • Meng L, Yang L, Zhao X et al (2012) Targeted delivery of chemotherapy agents using a liver cancer-specific aptamer. PLoS ONE 7:e33434

    Article  PubMed  CAS  Google Scholar 

  • Mi J, Liu Y, Rabbani ZN et al (2010) In vivo selection of tumor-targeting RNA motifs. Nat Chem Biol 6:22–24

    Article  PubMed  CAS  Google Scholar 

  • Midwood KS, Hussenet T, Langlois B et al (2011) Advances in tenascin-C biology. Cell Mol Life Sci 68:3175–3199

    Article  PubMed  CAS  Google Scholar 

  • Min K, Jo H, Song K et al (2011) Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (−) prostate cancers. Biomaterials 32:2124–2132

    Article  PubMed  CAS  Google Scholar 

  • Moore MD, Cookson J, Coventry VK et al (2011) Protection of HIV neutralizing aptamers against rectal and vaginal nucleases: implications for RNA-based therapeutics. J Biol Chem 286:2526–2535

    Article  PubMed  CAS  Google Scholar 

  • Mori T, Oguro A, Ohtsu T et al (2004) RNA aptamers selected against the receptor activator of NF-kappaB acquire general affinity to proteins of the tumor necrosis factor receptor family. Nucleic Acids Res 32:6120–6128

    Article  PubMed  CAS  Google Scholar 

  • Mufhandu HT, Gray ES, Madiga MC et al (2012) UCLA1, a synthetic derivative of a gp120 RNA aptamer, inhibits entry of human immunodeficiency virus type 1 subtype C. J Virol 86:4989–4999

    Article  PubMed  CAS  Google Scholar 

  • Neff CP, Zhou J, Remling L et al (2011) An aptamer–siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4(+) T cell decline in humanized mice. Sci Transl Med 3:66ra66

    Google Scholar 

  • Ng EW, Shima DT, Calias P et al (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132

    Article  PubMed  CAS  Google Scholar 

  • Ni X, Castanares M, Mukherjee A et al (2011a) Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 18:4206–4214

    Article  PubMed  CAS  Google Scholar 

  • Ni X, Zhang Y, Ribas J et al (2011b) Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts. J Clin Invest 121:2383–2390

    Article  PubMed  CAS  Google Scholar 

  • Nimjee SM, Rusconi CP, Sullenger BA (2005) Aptamers: an emerging class of therapeutics. Annu Rev Med 56:555–583

    Article  PubMed  CAS  Google Scholar 

  • Nimjee SM, Rusconi CP, Sullenger BA (2006) Aptamers to proteins. In: Klussmann S (ed) The aptamer handbook: functional oligonucleotides and their applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 131–166

    Chapter  Google Scholar 

  • Oney S, Lam RT, Bompiani KM et al (2009) Development of universal antidotes to control aptamer activity. Nat Med 15:1224–1228

    Article  PubMed  CAS  Google Scholar 

  • Ozalp VC, Eyidogan F, Oktem HA (2011) Aptamer-gated nanoparticles for smart drug delivery. Pharmaceuticals 4:1137–1157

    Article  CAS  Google Scholar 

  • Padilla R, Sousa R (1999) Efficient synthesis of nucleic acids heavily modified with non-canonical ribose 2′-groups using a mutantT7 RNA polymerase (RNAP). Nucleic Acids Res 27:1561–1563

    Article  PubMed  CAS  Google Scholar 

  • Pinto JT, Suffoletto BP, Berzin TM et al (1996) Prostate-specific membrane antigen: a novel folate hydrolase in human prostatic carcinoma cells. Clin Cancer Res 2:1445–1451

    PubMed  CAS  Google Scholar 

  • Ramalingam D, Duclair S, Datta SA et al (2011) RNA aptamers directed to human immunodeficiency virus type 1 Gag polyprotein bind to the matrix and nucleocapsid domains and inhibit virus production. J Virol 85:305–314

    Article  PubMed  CAS  Google Scholar 

  • Rapoport NY, Kennedy AM, Shea JE et al (2009) Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 138:268–276

    Article  PubMed  CAS  Google Scholar 

  • Ray P, Cheek MA, Sharaf ML et al (2012) Aptamer-mediated delivery of chemotherapy to pancreatic cancer cells. Nucleic Acid Ther 22:295–305

    PubMed  CAS  Google Scholar 

  • Realini T, Ng EWM, Adamis AP (2006) Applications in the clinic: the anti-VEGF aptamer. In: Klussmann S (ed) The aptamer handbook: functional oligonucleotides and their applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 443–460

    Chapter  Google Scholar 

  • Rusconi CP, Scardino E, Layzer J et al (2002) RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419:90–94

    Article  PubMed  CAS  Google Scholar 

  • Rusconi CP, Roberts JD, Pitoc GA et al (2004) Antidote-mediated control of an anticoagulant aptamer in vivo. Nat Biotechnol 22:1423–1428

    Article  PubMed  CAS  Google Scholar 

  • Ryou SM, Kim JM, Yeom JH et al (2011) Gold nanoparticle-assisted delivery of small, highly structured RNA into the nuclei of human cells. Biochem Biophys Res Commun 416:178–183

    Article  PubMed  CAS  Google Scholar 

  • Samson M, Libert F, Doranz BJ et al (1996) Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–725

    Article  PubMed  CAS  Google Scholar 

  • Shangguan D, Li Y, Tang Z et al (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA 103:11838–11843

    Article  PubMed  CAS  Google Scholar 

  • Shangguan D, Cao ZC, Li Y et al (2007) Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. Clin Chem 53:1153–1155

    Article  PubMed  CAS  Google Scholar 

  • Shangguan D, Cao Z, Meng L et al (2008a) Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 7:2133–2139

    Article  PubMed  CAS  Google Scholar 

  • Shangguan D, Meng L, Cao ZC et al (2008b) Identification of liver cancer-specific aptamers using whole live cells. Anal Chem 80:721–728

    Article  PubMed  CAS  Google Scholar 

  • Shieh YA, Yang SJ, Wei MF et al (2010) Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano 4:1433–1442

    Article  PubMed  CAS  Google Scholar 

  • Shigdar S, Lin J, Yu Y et al (2011) RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci 102:991–998

    Article  PubMed  CAS  Google Scholar 

  • Singla AK, Garg A, Aggarwal D (2002) Paclitaxel and its formulations. Int J Pharm 235:179–192

    Article  PubMed  CAS  Google Scholar 

  • Soontornworajit B, Zhou J, Shaw MT et al (2010a) Hydrogel functionalization with DNA aptamers for sustained PDGF-BB release. Chem Commun (Camb) 46:1857–1859

    Article  CAS  Google Scholar 

  • Soontornworajit B, Zhou J, Zhang Z et al (2010b) Aptamer-functionalized in situ injectable hydrogel for controlled protein release. Biomacromolecules 11:2724–2730

    Article  PubMed  CAS  Google Scholar 

  • Sooter LJ, Ellington AD (2002) Reflections on a novel therapeutic candidate. Chem Biol 9:857–858

    Article  PubMed  CAS  Google Scholar 

  • Soundararajan S, Chen W, Spicer EK et al (2008) The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res 68:2358–2365

    Article  PubMed  CAS  Google Scholar 

  • Srivastava M, Pollard HB (1999) Molecular dissection of nucleolin’s role in growth and cell proliferation: new insights. FASEB J 13:1911–1922

    PubMed  CAS  Google Scholar 

  • Taghdisi SM, Abnous K, Mosaffa F et al (2010) Targeted delivery of daunorubicin to T-cell acute lymphoblastic leukemia by aptamer. J Drug Target 18:277–281

    Article  PubMed  CAS  Google Scholar 

  • Tan L, Neoh KG, Kang ET et al (2011) PEGylated anti-MUC1 aptamer-doxorubicin complex for targeted drug delivery to MCF7 breast cancer cells. Macromol Biosci 11:1331–1335

    Article  PubMed  CAS  Google Scholar 

  • Tan L, Gee Neoh K, Kang ET et al (2012) Designer tridentate mucin 1 aptamer for targeted drug delivery. J Pharm Sci 101:1672–1677

    Article  PubMed  CAS  Google Scholar 

  • Tang Z, Shangguan D, Wang K et al (2007) Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem 79:4900–4907

    Article  PubMed  CAS  Google Scholar 

  • Tasch J, Gong M, Sadelain M et al (2001) A unique folate hydrolase, prostate-specific membrane antigen (PSMA): a target for immunotherapy? Crit Rev Immunol 21:249–261

    Article  PubMed  CAS  Google Scholar 

  • Thiel KW, Giangrande PH (2010) Intracellular delivery of RNA-based therapeutics using aptamers. Ther Deliv 1:849–861

    Article  PubMed  CAS  Google Scholar 

  • Thiel KW, Hernandez LI, Dassie JP et al (2012) Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic Acids Res 40:6319–6337

    Article  PubMed  CAS  Google Scholar 

  • Thomas MD, Srivastava B, Allman D (2006) Regulation of peripheral B cell maturation. Cell Immunol 239:92–102

    Article  PubMed  CAS  Google Scholar 

  • Tong GJ, Hsiao SC, Carrico ZM et al (2009) Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J Am Chem Soc 131:11174–11178

    Article  PubMed  CAS  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  PubMed  CAS  Google Scholar 

  • Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212

    Article  PubMed  CAS  Google Scholar 

  • Vavalle JP, Rusconi CP, Zelenkofske S et al (2012) A phase 1 ascending dose study of a subcutaneously administered factor IXa inhibitor and its active control agent. J Thromb Haemost 10:1303–1311

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Kim YT, Li N et al (2010) Surface-immobilized aptamers for cancer cell isolation and microscopic cytology. Cancer Res 70:9371–9380

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Mahmood MA, Li N et al (2012) Nanotextured substrates with immobilized aptamers for cancer cell isolation and cytology. Cancer 118:1145–1154

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochem J 434:365–381

    Article  PubMed  CAS  Google Scholar 

  • Wang CH, Huang YF, Yeh CK (2011) Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging. Langmuir 27:6971–6976

    Article  PubMed  CAS  Google Scholar 

  • Wang CH, Kang ST, Lee YH et al (2012) Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials 33:1939–1947

    Article  PubMed  CAS  Google Scholar 

  • Wheeler LA, Trifonova R, Vrbanac V et al (2011) Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer–siRNA chimeras. J Clin Invest 121:2401–2412

    Article  PubMed  CAS  Google Scholar 

  • White RR, Sullenger BA, Rusconi CP (2000) Developing aptamers into therapeutics. J Clin Invest 106:929–934

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Sefah K, Liu H et al (2010) DNA aptamer–micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci USA 107:5–10

    Article  PubMed  CAS  Google Scholar 

  • Xiao Z, Shangguan D, Cao Z et al (2008) Cell-specific internalization study of an aptamer from whole cell selection. Chemistry 14:1769–1775

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Liu X, Liu Z et al (2012) Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv Mater 24:2890–2895

    Article  PubMed  CAS  Google Scholar 

  • Ye M, Hu J, Peng M et al (2012) Generating aptamers by cell-SELEX for applications in molecular medicine. Int J Mol Sci 13:3341–3353

    Article  PubMed  CAS  Google Scholar 

  • Yin J, He X, Wang K et al (2012) One-step engineering of silver nanoclusters-aptamer assemblies as luminescent labels to target tumor cells. Nanoscale 4:110–112

    Article  PubMed  CAS  Google Scholar 

  • Yu D, Wang D, Zhu FG et al (2009) Modifications incorporated in CpG motifs of oligodeoxynucleotides lead to antagonist activity of toll-like receptors 7 and 9. J Med Chem 52:5108–5114

    Article  PubMed  CAS  Google Scholar 

  • Yu C, Hu Y, Duan J et al (2011a) Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS ONE 6:e24077

    Article  PubMed  CAS  Google Scholar 

  • Yu MK, Kim D, Lee IH et al (2011b) Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7:2241–2249

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Zhao N, Zeng Z et al (2009) Using an RNA aptamer probe for flow cytometry detection of CD30-expressing lymphoma cells. Lab Invest 89:1423–1432

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Fabiilli ML, Haworth KJ et al (2010) Initial investigation of acoustic droplet vaporization for occlusion in canine kidney. Ultrasound Med Biol 36:1691–1703

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Sefah K, Tang L et al (2012) A novel aptamer developed for breast cancer cell internalization. Chem Med Chem 7:79–84

    PubMed  CAS  Google Scholar 

  • Zhao N, Bagaria HG, Wong MS et al (2011) A nanocomplex that is both tumor cell-selective and cancer gene-specific for anaplastic large cell lymphoma. J Nanobiotechnol 9:2

    Article  CAS  Google Scholar 

  • Zhao Y, Duan S, Zeng X et al (2012) Prodrug strategy for PSMA-targeted delivery of TGX-221 to prostate cancer cells. Mol Pharm 9:1705–1716

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Rossi JJ (2011) Aptamer-targeted RNAi for HIV-1 therapy. Methods Mol Biol 721:355–371

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Li H, Li S et al (2008) Novel dual inhibitory function aptamer–siRNA delivery system for HIV-1 therapy. Mol Ther 16:1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Swiderski P, Li H et al (2009) Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res 37:3094–3109

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Shu Y, Guo P et al (2011) Dual functional RNA nanoparticles containing phi29 motor pRNA and anti-gp120 aptamer for cell-type specific delivery and HIV-1 inhibition. Methods 54:284–294

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Meng L, Ye M et al (2012) Self-assembled aptamer-based drug carriers for bispecific cytotoxicity to cancer cells. Chem Asian J 7:1630–1636

    Article  PubMed  CAS  Google Scholar 

  • Zueva E, Rubio LI, Duconge F et al (2011) Metastasis-focused cell-based SELEX generates aptamers inhibiting cell migration and invasion. Int J Cancer 128:797–804

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Ray.

About this article

Cite this article

Ray, P., Viles, K.D., Soule, E.E. et al. Application of Aptamers for Targeted Therapeutics. Arch. Immunol. Ther. Exp. 61, 255–271 (2013). https://doi.org/10.1007/s00005-013-0227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-013-0227-0

Keywords

Navigation