Skip to main content
Log in

Role of random genetic drift in the evolution of interactive systems

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Through comparative studies of DNA sequences it has become possible to test the neutral and the selection theories of molecular evolution. The separate estimation of the numbers of synonymous and nonsyn-onymous substitutions is one of the most powerful tools for detecting selection. The patterns on the average and variance of these two types of substitutions of mammalian genes turned out to be in accord with the slightly deleterious or the nearly neutral mutation theory for nonsynonymous changes. Interactive systems at the amino acid level were suggested to be responsible for such nearly neutral or very weak selection. An attractive model is the NK model of Kauffman, which assumes that each amino acid makes a fitness contribution that depends upon the amino acid and upon K other amino acids among the N that make the protein. It is known that the fitness landscape is very rugged for K ≥ 2. Population genetic analysis of this model suggest that protein evolution obeys the nearly neutral theory and that random genetic drift is important. In other words, evolution becomes rapid in small populations because proportion of near-neutrality increases among new mutations, and proteins as interactive systems evolve by shifting through random genetic drift on the multipeaked fitness landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballard JWO, Kreitman M (1994) Unraveling selection in the mitochondrial genome of Drosophila. Genetics 138:757–772

    PubMed  CAS  Google Scholar 

  • Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129:897–907

    PubMed  CAS  Google Scholar 

  • Chao L, Carr DE (1993) The molecular clock and the relationship between population size and generation time. Evolution 47:688–690

    Article  Google Scholar 

  • Charlesworth B, Morgan MT, Charlesworth D (1993) The effect of deleterious mutations on neutral molecular variation. Genetics 34: 1289–1303

    Google Scholar 

  • Eanes WF, Kirchner M, Yoon J (1993) Evidence for adaptive evolution of the G6pd gene in the Drosophila melanogaster and Drosophila simulans lineages. Proc Natl Acad Sci USA 90:7475–7479

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JH (1984) Molecular evolution over the mutational landscape. Evolution 38:1116–1129

    Article  CAS  Google Scholar 

  • Gillespie JH (1987) Molecular evolution and the neutral allele theory. Oxf Surv Evol Biol 4:10–37

    Google Scholar 

  • Gillespie JH (1991) The causes of molecular evolution. Oxford University Press, Oxford

    Google Scholar 

  • Gillespie JH (1994) Substitution processes in molecular evolution. III. Deleterious alleles. Genetics 138:943–952

    CAS  Google Scholar 

  • Goldman N (1994) Variance to mean ratio, R(t), for Poisson processes on phylogenetic trees. Mol Phyl Evol 3:230–239

    Article  CAS  Google Scholar 

  • Ina Y (1995) New methods for estimating the numbers of synonymous and nonsynonymous substitutions. J Mol Evol 40:190–226

    Article  PubMed  CAS  Google Scholar 

  • Kaplan N, Hudson RR, Langley CH (1989) The ‘hitchhiking effect’ revisited. Genetics 123:887–899

    PubMed  CAS  Google Scholar 

  • Kauffman SA (1993) The origins of order. Oxford University Press, Oxford

    Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    Article  PubMed  CAS  Google Scholar 

  • Kingman JFC (1978) A simple model for the balance between selection and mutation. J Appl Probab 15:1–12

    Article  Google Scholar 

  • Kliman RM, Hey J (1993) DNA sequence variation at the period locus within and among species of the Drosophila melanogaster complex. Genetics 133:375–387

    PubMed  CAS  Google Scholar 

  • Langley CH, Fitch WM (1974) An examination of the constancy of the rate of molecular evolution. J Mol Evol 3:161–177

    Article  PubMed  CAS  Google Scholar 

  • Long M, Langley CH (1993) Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260:91–95

    Article  PubMed  CAS  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  PubMed  CAS  Google Scholar 

  • Miyashita NT, Innan H, Terauchi R (1996) Intra- and interspecific variation of alcohol dehydrogenase locus region in wild plants Arabis gemmifera and Arabidopsis thaliana. Mol Biol Evol 13:433–436

    PubMed  CAS  Google Scholar 

  • Nachman MW, Boyer SN, Aquadro CF (1994) Nonneutral evolution at the mitochondrial NADH dehydrogenase subunit 3 gene in mice. Proc Natl Acad Sci USA 91:6364–6368

    Article  PubMed  CAS  Google Scholar 

  • Nachman MW, Brown WM, Stoneking M, Aquadro CF (1996) Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics 143:953–963

    Google Scholar 

  • Ohta T (1973) Slightly deleterious mutant substitutions in evolution Nature 246:96–98

    Article  PubMed  CAS  Google Scholar 

  • Ohta T (1977) Extension to the neutral mutation random drift hypothesis. In: Kimura M (ed) Molecular evolution and polymorphism. National Institute of Genetics, Mishima, pp 148–167

    Google Scholar 

  • Ohta T (1991) Multigene families and the evolution of complexity. J Mol Evol 33:34–41

    Article  PubMed  CAS  Google Scholar 

  • Ohta T (1992) The nearly neutral theory of molecular evolution. Annu Rev Ecol Syst 23:263–286

    Article  Google Scholar 

  • Ohta T (1995) Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory. J Mol Evol 40:56–63

    Article  PubMed  CAS  Google Scholar 

  • Ohta T, Kimura M (1971) On the constancy of the evolutionary rate of cistrons. J Mol Evol 1:18–25

    Article  CAS  Google Scholar 

  • Ohta T, Tachida H (1990) Theoretical study of near neutrality. I. Heterozygosity and rate of mutant substitution. Genetics 126:219–229

    PubMed  CAS  Google Scholar 

  • Tachida H (1991) A study on a nearly neutral mutation model in finite populations. Genetics 128:183–192

    PubMed  CAS  Google Scholar 

  • Tachida H (1996) Effects of the shape of distribution of mutant effect in nearly neutral mutation models. J Genet (in press)

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

  • Zuckerkandl E (1987) On the molecular evolutionary clock. J Mol Evol 26:34–46

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohta, T. Role of random genetic drift in the evolution of interactive systems. J Mol Evol 44 (Suppl 1), S9–S14 (1997). https://doi.org/10.1007/PL00000054

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00000054

Key words

Navigation