Skip to main content
Log in

Thermodynamics of string field theory motivated nonlocal models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the thermodynamic properties of the nonlocal tachyon motivated by their nonlocal structure in string field theory. We use previously developed perturbative methods for nonlocal fields to calculate the partition function and the equation of state in the high temperature limit. We find that in these models the tachyons undergo a second order phase transition. We compare our results with those of ordinary scalar field theory. We also calculate the one loop finite temperature effective potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513 [hep-th/0410103] [INSPIRE].

    ADS  Google Scholar 

  2. A. Sen, Rolling tachyon, JHEP 04 (2002) 048 [hep-th/0203211] [INSPIRE].

    Article  ADS  Google Scholar 

  3. A. Sen, Tachyon matter, JHEP 07 (2002) 065 [hep-th/0203265] [INSPIRE].

    Article  ADS  Google Scholar 

  4. E. Witten, Noncommutative geometry and string field theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. V.A. Kostelecky and S. Samuel, The static tachyon potential in the open bosonic string theory, Phys. Lett. B 207 (1988) 169 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. V.A. Kostelecky and S. Samuel, On a nonperturbative vacuum for the open bosonic string, Nucl. Phys. B 336 (1990) 263 [INSPIRE].

    Article  ADS  Google Scholar 

  7. I.Y. Aref’eva, A.S. Koshelev, D.M. Belov and P.B. Medvedev, Tachyon condensation in cubic superstring field theory, Nucl. Phys. B 638 (2002) 3 [hep-th/0011117] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. G. Calcagni and G. Nardelli, Tachyon solutions in boundary and cubic string field theory, Phys. Rev. D 78 (2008) 126010 [arXiv:0708.0366] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. W. Taylor and B. Zwiebach, D-branes, tachyons and string field theory, in S.S. Gubser and J.D. Lykken eds., Strings, branes and extra dimensions (TASI 2001), World Scientific (2004) [hep-th/0311017] [INSPIRE].

  10. G. Calcagni and G. Nardelli, Kinks of open superstring field theory, Nucl. Phys. B 823 (2009) 234 [arXiv:0904.3744] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. B. Dragovich, Zeta strings, hep-th/0703008 [INSPIRE].

  12. B. Dragovich, Zeta nonlocal scalar fields, Theor. Math. Phys. 157 (2008) 1671 [arXiv:0804.4114] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Moeller and B. Zwiebach, Dynamics with infinitely many time derivatives and rolling tachyons, JHEP 10 (2002) 034 [hep-th/0207107] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. I.Y. Aref’eva and L.V. Joukovskaya, Time lumps in nonlocal stringy models and cosmological applications, JHEP 10 (2005) 087 [hep-th/0504200] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. I.Y. Aref’eva, A.S. Koshelev and S.Y. Vernov, Crossing of the w = −1 barrier by D3-brane dark energy model, Phys. Rev. D 72 (2005) 064017 [astro-ph/0507067] [INSPIRE].

    ADS  Google Scholar 

  16. I.Y. Aref’eva, Nonlocal string tachyon as a model for cosmological dark energy, AIP Conf. Proc. 826 (2006) 301 [astro-ph/0410443] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. N. Barnaby, T. Biswas and J.M. Cline, p-adic inflation, JHEP 04 (2007) 056 [hep-th/0612230] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. J.E. Lidsey, Stretching the inflaton potential with kinetic energy, Phys. Rev. D 76 (2007) 043511 [hep-th/0703007] [INSPIRE].

    ADS  Google Scholar 

  19. N.J. Nunes and D.J. Mulryne, Non-linear non-local cosmology, AIP Conf. Proc. 1115 (2009) 329 [arXiv:0810.5471] [INSPIRE].

    Article  ADS  Google Scholar 

  20. N. Barnaby and J.M. Cline, Large nonGaussianity from nonlocal inflation, JCAP 07 (2007) 017 [arXiv:0704.3426] [INSPIRE].

    Article  ADS  Google Scholar 

  21. N. Barnaby and J.M. Cline, Predictions for nonGaussianity from nonlocal inflation, JCAP 06 (2008) 030 [arXiv:0802.3218] [INSPIRE].

    Article  ADS  Google Scholar 

  22. I.Y. Aref’eva, L.V. Joukovskaya and S.Y. Vernov, Bouncing and accelerating solutions in nonlocal stringy models, JHEP 07 (2007) 087 [hep-th/0701184] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. L. Joukovskaya, Dynamics in nonlocal cosmological models derived from string field theory, Phys. Rev. D 76 (2007) 105007 [arXiv:0707.1545] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. A.S. Koshelev, Non-local SFT tachyon and cosmology, JHEP 04 (2007) 029 [hep-th/0701103] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. G. Calcagni, M. Montobbio and G. Nardelli, A route to nonlocal cosmology, Phys. Rev. D 76 (2007) 126001 [arXiv:0705.3043] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. G. Calcagni and G. Nardelli, Cosmological rolling solutions of nonlocal theories, Int. J. Mod. Phys. D 19 (2010) 329 [arXiv:0904.4245] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. I.Y. Aref’eva, L.V. Joukovskaya and S.Y. Vernov, Dynamics in nonlocal linear models in the Friedmann-Robertson-Walker metric, J. Phys. A 41 (2008) 304003 [arXiv:0711.1364] [INSPIRE].

    MathSciNet  Google Scholar 

  28. J.W. Moffat, Ultraviolet complete electroweak model without a Higgs particle, Eur. Phys. J. Plus 126 (2011) 53 [arXiv:1006.1859] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J.W. Moffat and V.T. Toth, Redesigning electroweak theory: does the Higgs particle exist?, arXiv:0908.0780 [INSPIRE].

  30. J.W. Moffat and V.T. Toth, A finite electroweak model without a Higgs particle, arXiv:0812.1991 [INSPIRE].

  31. J.W. Moffat, Electroweak model without a Higgs particle, arXiv:0709.4269 [INSPIRE].

  32. S. Deser and R.P. Woodard, Nonlocal cosmology, Phys. Rev. Lett. 99 (2007) 111301 [arXiv:0706.2151] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. T. Koivisto, Dynamics of nonlocal cosmology, Phys. Rev. D 77 (2008) 123513 [arXiv:0803.3399] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. T. Biswas, E. Gerwick, T. Koivisto and A. Mazumdar, Towards singularity and ghost free theories of gravity, Phys. Rev. Lett. 108 (2012) 031101 [arXiv:1110.5249] [INSPIRE].

    Article  ADS  Google Scholar 

  35. T. Biswas, A. Mazumdar and W. Siegel, Bouncing universes in string-inspired gravity, JCAP 03 (2006) 009 [hep-th/0508194] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. J. Khoury, Fading gravity and self-inflation, Phys. Rev. D 76 (2007) 123513 [hep-th/0612052] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. E. Elizalde, E.O. Pozdeeva and S.Y. Vernov, de Sitter universe in non-local gravity, Phys. Rev. D 85 (2012) 044002 [arXiv:1110.5806] [INSPIRE].

    ADS  Google Scholar 

  38. J.W. Moffat, Ultraviolet complete quantum gravity, Eur. Phys. J. Plus 126 (2011) 43 [arXiv:1008.2482] [INSPIRE].

    Article  Google Scholar 

  39. L. Modesto, Super-renormalizable quantum gravity, Phys. Rev. D 86 (2012) 044005 [arXiv:1107.2403] [INSPIRE].

    ADS  Google Scholar 

  40. S. Capozziello, E. Elizalde, S. Nojiri and S.D. Odintsov, Accelerating cosmologies from non-local higher-derivative gravity, Phys. Lett. B 671 (2009) 193 [arXiv:0809.1535] [INSPIRE].

    ADS  Google Scholar 

  41. P.G.O. Freund and M. Olson, Nonarchimedean strings, Phys. Lett. B 199 (1987) 186 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. P.G.O. Freund and E. Witten, Adelic string amplitudes, Phys. Lett. B 199 (1987) 191 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. L. Brekke, P.G.O. Freund, M. Olson and E. Witten, Nonarchimedean string dynamics, Nucl. Phys. B 302 (1988) 365 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. T. Biswas, J.A.R. Cembranos and J.I. Kapusta, Thermodynamics and cosmological constant of non-local field theories from p-adic strings, JHEP 10 (2010) 048 [arXiv:1005.0430] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  45. T. Biswas, J.A.R. Cembranos and J.I. Kapusta, Thermal duality and Hagedorn transition from p-adic strings, Phys. Rev. Lett. 104 (2010) 021601 [arXiv:0910.2274] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. J.J. Atick and E. Witten, The Hagedorn transition and the number of degrees of freedom of string theory, Nucl. Phys. B 310 (1988) 291 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. J.A. Minahan, Mode interactions of the tachyon condensate in p-adic string theory, JHEP 03 (2001) 028 [hep-th/0102071] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. T. Biswas, M. Grisaru and W. Siegel, Linear Regge trajectories from worldsheet lattice parton field theory, Nucl. Phys. B 708 (2005) 317 [hep-th/0409089] [INSPIRE].

    Article  ADS  Google Scholar 

  49. R. Bluhm, Particle fields at finite temperature from string field theory, Phys. Rev. D 43 (1991) 4042 [INSPIRE].

    ADS  Google Scholar 

  50. A. Nayeri, R.H. Brandenberger and C. Vafa, Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology, Phys. Rev. Lett. 97 (2006) 021302 [hep-th/0511140] [INSPIRE].

    Article  ADS  Google Scholar 

  51. R.H. Brandenberger et al., More on the spectrum of perturbations in string gas cosmology, JCAP 11 (2006) 009 [hep-th/0608186] [INSPIRE].

    Article  ADS  Google Scholar 

  52. T. Biswas, R. Brandenberger, A. Mazumdar and W. Siegel, Non-perturbative gravity, Hagedorn bounce & CMB, JCAP 12 (2007) 011 [hep-th/0610274] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. J. Magueijo and L. Pogosian, Could thermal fluctuations seed cosmic structure?, Phys. Rev. D 67 (2003) 043518 [astro-ph/0211337] [INSPIRE].

    ADS  Google Scholar 

  54. J. Magueijo and P. Singh, Thermal fluctuations in loop cosmology, Phys. Rev. D 76 (2007) 023510 [astro-ph/0703566] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. Y.-F. Cai, W. Xue, R. Brandenberger and X.-M. Zhang, Thermal fluctuations and bouncing cosmologies, JCAP 06 (2009) 037 [arXiv:0903.4938] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Magueijo, L. Smolin and C.R. Contaldi, Holography and the scale-invariance of density fluctuations, Class. Quant. Grav. 24 (2007) 3691 [astro-ph/0611695] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. J.-P. Wu and Y. Ling, Thermal non-Gaussianitity in near-Milne universe, Phys. Lett. B 684 (2010) 177 [arXiv:0908.2392] [INSPIRE].

    ADS  Google Scholar 

  58. J. Magueijo, Near-Milne realization of scale-invariant fluctuations, Phys. Rev. D 76 (2007) 123502 [astro-ph/0703781] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  59. A. Berera, Warm inflation, Phys. Rev. Lett. 75 (1995) 3218 [astro-ph/9509049] [INSPIRE].

    Article  ADS  Google Scholar 

  60. Y. Volovich, Numerical study of nonlinear equations with infinite number of derivatives, J. Phys. A 36 (2003) 8685 [math-ph/0301028] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  61. V.S. Vladimirov and Y.I. Volovich, On the nonlinear dynamical equation in the p-adic string theory, Theor. Math. Phys. 138 (2004) 297 [Teor. Mat. Fiz. 138 (2004) 355] [math-ph/0306018] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  62. V.S. Vladimirov, On the equation of the p-adic open string for the scalar tachyon field, Izv. Math. 69 (2005) 487 [math-ph/0507018] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  63. D.V. Prokhorenko, On some nonlinear integral equation in the (super)string theory, math-ph/0611068 [INSPIRE].

  64. N. Barnaby and N. Kamran, Dynamics with infinitely many derivatives: variable coefficient equations, JHEP 12 (2008) 022 [arXiv:0809.4513] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. N. Barnaby and N. Kamran, Dynamics with infinitely many derivatives: the initial value problem, JHEP 02 (2008) 008 [arXiv:0709.3968] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. G. Calcagni, M. Montobbio and G. Nardelli, Localization of nonlocal theories, Phys. Lett. B 662 (2008) 285 [arXiv:0712.2237] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  67. P. Górka, H. Prado and E.G. Reyes, Functional calculus via Laplace transform and equations with infinitely many derivatives, J. Math. Phys. 51 (2010) 103512.

    Article  MathSciNet  ADS  Google Scholar 

  68. J.I. Kapusta and C. Gale, Finite-temperature field theory: principles and applications, 2nd edition, Cambridge University Press, Cambridge U.K. (2006) [INSPIRE].

    Book  MATH  Google Scholar 

  69. T.D. Lee and M. Margulies, Interaction of a dense fermion medium with a scalar meson field, Phys. Rev. D 11 (1975) 1591 [Erratum ibid. D 12 (1975) 4008] [INSPIRE].

    ADS  Google Scholar 

  70. P.B. Arnold and O. Espinosa, The effective potential and first order phase transitions: beyond leading-order, Phys. Rev. D 47 (1993) 3546 [Erratum ibid. D 50 (1994) 6662] [hep-ph/9212235] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tirthabir Biswas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, T., Kapusta, J.I. & Reddy, A. Thermodynamics of string field theory motivated nonlocal models. J. High Energ. Phys. 2012, 8 (2012). https://doi.org/10.1007/JHEP12(2012)008

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2012)008

Keywords

Navigation