Skip to main content
Log in

CFT dual of the AdS Dirichlet problem: fluid/gravity on cut-off surfaces

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the gravitational Dirichlet problem in AdS spacetimes with a view to understanding the boundary CFT interpretation. We define the problem as bulk Einstein’s equations with Dirichlet boundary conditions on fixed timelike cut-off hypersurface. Using the fluid/gravity correspondence, we argue that one can determine non-linear solutions to this problem in the long wavelength regime. On the boundary we find a conformal fluid with Dirichlet constitutive relations, viz., the fluid propagates on a ‘dynamical’ background metric which depends on the local fluid velocities and temperature. This boundary fluid can be re-expressed as an emergent hypersurface fluid which is non-conformal but has the same value of the shear viscosity as the boundary fluid. The hypersurface dynamics arises as a collective effect, wherein effects of the background are transmuted into the fluid degrees of freedom. Furthermore, we demonstrate that this collective fluid is forced to be non-relativistic below a critical cut-off radius in AdS to avoid acausal sound propagation with respect to the hypersurface metric. We further go on to show how one can use this set-up to embed the recent constructions of flat spacetime duals to non-relativistic fluid dynamics into the AdS/CFT correspondence, arguing that a version of the membrane paradigm arises naturally when the boundary fluid lives on a background Galilean manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200 [INSPIRE].

    MATH  ADS  MathSciNet  Google Scholar 

  2. L. Susskind and E. Witten, The holographic bound in Anti-de Sitter space, hep-th/9805114 [INSPIRE].

  3. T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016. [INSPIRE].

  4. A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999) 065011 [hep-th/9809022 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012 [INSPIRE].

    Article  Google Scholar 

  6. I. Heemskerk and J. Polchinski, Holographic and Wilsonian renormalization groups, JHEP 06 (2011) 031 [arXiv:1010.1264 [INSPIRE].

    Article  ADS  Google Scholar 

  7. T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: holographic Wilsonian RG and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036 [INSPIRE].

    ADS  Google Scholar 

  8. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456 [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Rangamani, Gravity and hydrodynamics: lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. V.E. Hubeny, The fluid/gravity correspondence: a new perspective on the membrane paradigm, Class. Quant. Grav. 28 (2011) 114007 [arXiv:1011.4948 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Bhattacharyya, R. Loganayagam, S. Minwalla, S. Nampuri, S.P. Trivedi, et al., Forced fluid dynamics from gravity, JHEP 02 (2009) 018 [arXiv:0806.0006 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and A. Sharma, Conformal nonlinear fluid dynamics from gravity in arbitrary dimensions, JHEP 12 (2008) 116 [arXiv:0809.4272 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Bhattacharyya, S. Minwalla and S.R. Wadia, The incompressible non-relativistic Navier-Stokes equation from gravity, JHEP 08 (2009) 059 [arXiv:0810.1545 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. D. Nickel and D.T. Son, Deconstructing holographic liquids, New J. Phys. 13 (2011) 075010 [arXiv:1009.3094 [INSPIRE].

    Article  ADS  Google Scholar 

  15. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian approach to fluid/gravity duality, JHEP 03 (2011) 141 [arXiv:1006.1902 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, From Navier-Stokes to Einstein, arXiv:1101.2451. [INSPIRE].

  17. T. Damour, Black hole Eddy currents, Phys. Rev. D 18 (1978) 3598 [INSPIRE].

    ADS  Google Scholar 

  18. K. Thorne, D. Macdonald and R. Price, Black holes: the membrane paradigm, Yale University Press, New Heaven U.S.A. (1986)

    Google Scholar 

  19. G. Compere, P. McFadden, K. Skenderis and M. Taylor, The holographic fluid dual to vacuum Einstein gravity, JHEP 07 (2011) 050 [arXiv:1103.3022 [INSPIRE].

    Article  ADS  Google Scholar 

  20. C. Eling, I. Fouxon and Y. Oz, The incompressible Navier-Stokes equations from membrane dynamics, Phys. Lett. B 680 (2009) 496 [arXiv:0905.3638 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  21. C. Eling and Y. Oz, Relativistic CFT hydrodynamics from the membrane paradigm, JHEP 02 (2010) 069 [arXiv:0906.4999 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. R.-G. Cai, L. Li and Y.-L. Zhang, Non-Relativistic fluid dual to asymptotically AdS gravity at finite cutoff surface, JHEP 07 (2011) 027 [arXiv:1104.3281 [INSPIRE].

    Article  ADS  Google Scholar 

  23. I. Fouxon and Y. Oz, Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations, Phys. Rev. Lett. 101 (2008) 261602 [arXiv:0809.4512 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. L. Landau and E. Lifshitz, Fluid mechanics, Course of theoretical physics, vol. 6 61, Butterworth-Heinemann, Oxford U.K. (1987).

  25. S. Kuperstein and A. Mukhopadhyay, The unconditional RG flow of the relativistic holographic fluid, arXiv:1105.4530 [INSPIRE].

  26. E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].

  27. M. Berkooz, A. Sever and A. Shomer, ’Double tracedeformations, boundary conditions and space-time singularities, JHEP 05 (2002) 034 [hep-th/0112264 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. I. Papadimitriou, Holographic renormalization as a canonical transformation, JHEP 11 (2010) 014 [arXiv:1007.4592 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. D. Marolf and S.F. Ross, Reversing renormalization-group flows with AdS/CFT, JHEP 05 (2008) 055 [arXiv:0705.4642 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121 [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. S. Bhattacharyya, V.E. Hubeny, R. Loganayagam, G. Mandal, S. Minwalla, et al., Local fluid dynamical entropy from gravity, JHEP 06 (2008) 055 [arXiv:0803.2526 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. R. Loganayagam, Entropy current in conformal hydrodynamics, JHEP 05 (2008) 087 [arXiv:0801.3701 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808 [INSPIRE].

    ADS  Google Scholar 

  35. S.A. Bludman and M. Ruderman, Possibility of the speed of sound exceeding the speed of light in ultradense matter, Phys. Rev. 170 (1968) 1176 [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. V.N. Gusyatnikova and V.A. Yamaguzhin, Symmetries and conservation laws of Navier-Stokes equations, Acta. Appl. Math. 15 (1989) 65.

    Article  MATH  MathSciNet  Google Scholar 

  38. A. Bagchi and R. Gopakumar, Galilean conformal algebras and AdS/CFT, JHEP 07 (2009) 037 [arXiv:0902.1385 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. C. Misner, K. Thorne and J. Wheeler, Gravitation, WH Freeman and Company, San Francisco U.S.A. (1973).

    Google Scholar 

  40. C. Ruede and N. Straumann, On Newton-Cartan cosmology, Helv. Phys. Acta 70 (1997) 318 [gr-qc/9604054 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  41. G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25 (2008) 195014 [arXiv:0805.1902 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. T. Andrade and D. Marolf, AdS/CFT beyond the unitarity bound, arXiv:1105.6337 [INSPIRE].

  43. V. Lysov and A. Strominger, From Petrov-Einstein to Navier-Stokes, arXiv:1104.5502 [INSPIRE].

  44. I. Bredberg and A. Strominger, Black holes as incompressible fluids on the sphere, arXiv:1106.3084. [INSPIRE].

  45. J. Sonner and B. Withers, A gravity derivation of the Tisza-Landau model in AdS/CFT, Phys. Rev. D 82 (2010) 026001 [arXiv:1004.2707 [INSPIRE].

    ADS  Google Scholar 

  46. J. Bhattacharya, S. Bhattacharyya and S. Minwalla, Dissipative superfluid dynamics from gravity, JHEP 04 (2011) 125 [arXiv:1101.3332 [INSPIRE].

    Article  ADS  Google Scholar 

  47. C.P. Herzog, N. Lisker, P. Surowka and A. Yarom, Transport in holographic superfluids, JHEP 08 (2011) 052 [arXiv:1101.3330 [INSPIRE].

    Article  ADS  Google Scholar 

  48. J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A theory of first order dissipative superfluid dynamics, arXiv:1105.3733 [INSPIRE].

  49. H.P. Kunzle, Covariant Newtonian limit of Lorentz spacetimes, Gen. Rel. Grav. 7 (1976) 445.

    ADS  MathSciNet  Google Scholar 

  50. J.A.N. Gonzalez and J.B.S. de Salas, The structure of the Newtonian limit, J. Geom. Phys. 44 (2003) 595.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. D. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  52. K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  54. R. Emparan, Blackfolds, arXiv:1106.2021 [INSPIRE].

  55. J. Camps, R. Emparan and N. Haddad, Black brane viscosity and the Gregory-Laflamme instability, JHEP 05 (2010) 042 [arXiv:1003.3636 [INSPIRE].

    Article  ADS  Google Scholar 

  56. P. Figueras and T. Wiseman, Gravity and large black holes in Randall-Sundrum II braneworlds, arXiv:1105.2558 [INSPIRE].

  57. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Camps.

Additional information

ArXiv ePrint: 1106.2577

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brattan, D., Camps, J., Loganayagam, R. et al. CFT dual of the AdS Dirichlet problem: fluid/gravity on cut-off surfaces. J. High Energ. Phys. 2011, 90 (2011). https://doi.org/10.1007/JHEP12(2011)090

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2011)090

Keywords

Navigation