Skip to main content
Log in

Physical theories, eternal inflation, and the quantum universe

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Infinities in eternal inflation have long been plaguing cosmology, making any predictions highly sensitive to how they are regulated. The problem exists already at the level of semi-classical general relativity, and has a priori nothing to do with quantum gravity. On the other hand, we know that certain problems in semi-classical gravity, for example physics of black holes and their evaporation, have led to understanding of surprising, quantum natures of spacetime and gravity, such as the holographic principle and horizon complementarity.

In this paper, we present a framework in which well-defined predictions are obtained in an eternally inflating multiverse, based on the principles of quantum mechanics. We propose that the entire multiverse is described purely from the viewpoint of a single “observer,” who describes the world as a quantum state defined on his/her past light cones bounded by the (stretched) apparent horizons. We find that quantum mechanics plays an essential role in regulating infinities. The framework is “gauge invariant,” i.e. predictions do not depend on how spacetime is parametrized, as it should be in a theory of quantum gravity.

Our framework provides a fully unified treatment of quantum measurement processes and the multiverse. We conclude that the eternally inflating multiverse and many worlds in quantum mechanics are the same. Other important implications include: global spacetime can be viewed as a derived concept; the multiverse is a transient phenomenon during the world relaxing into a supersymmetric Minkowski state. We also present a model of “initial conditions” for the multiverse. By extrapolating our framework to the extreme, we arrive at a picture that the entire multiverse is a fluctuation in the stationary, fractal “mega-multiverse,” in which an infinite sequence of multiverse productions occurs.

The framework discussed here does not suffer from problems/paradoxes plaguing other measures proposed earlier, such as the youngness paradox and the Boltzmann brain problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Guth and E.J. Weinberg, Could the universe have recovered from a slow first order phase transition?, Nucl. Phys. B 212 (1983) 321 [INSPIRE].

    Article  ADS  Google Scholar 

  2. A. Vilenkin, The birth of inflationary universes, Phys. Rev. D 27 (1983) 2848 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. A.D. Linde, Eternally existing selfreproducing chaotic inflationary universe, Phys. Lett. B 175 (1986) 395 [INSPIRE].

    ADS  Google Scholar 

  4. A.D. Linde, Eternal chaotic inflation, Mod. Phys. Lett. A 1 (1986) 81 [INSPIRE].

    ADS  Google Scholar 

  5. R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. L. Susskind, The anthropic landscape of string theory, hep-th/0302219 [INSPIRE].

  8. M.R. Douglas, The statistics of string/M theory vacua, JHEP 05 (2003) 046 [hep-th/0303194] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J.D. Barrow and F.J. Tipler, The anthropic cosmological principle, Oxford University Press, Oxford U.K. (1986).

    Google Scholar 

  10. C.J. Hogan, Why the universe is just so, Rev. Mod. Phys. 72 (2000) 1149 [astro-ph/9909295] [INSPIRE].

    Article  ADS  Google Scholar 

  11. L.J. Hall and Y. Nomura, Evidence for the multiverse in the standard model and beyond, Phys. Rev. D 78 (2008) 035001 [arXiv:0712.2454] [INSPIRE].

    ADS  Google Scholar 

  12. S. Weinberg, Anthropic bound on the cosmological constant, Phys. Rev. Lett. 59 (1987) 2607 [INSPIRE].

    Article  ADS  Google Scholar 

  13. A.H. Guth, Inflation and eternal inflation, Phys. Rept. 333 (2000) 555 [astro-ph/0002156] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A. Vilenkin, A measure of the multiverse, J. Phys. A 40 (2007) 6777 [hep-th/0609193] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. S. Winitzki, Predictions in eternal inflation, Lect. Notes Phys. 738 (2008) 157 [gr-qc/0612164] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A.D. Linde, Inflationary cosmology, Lect. Notes Phys. 738 (2008) 1 [arXiv:0705.0164] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. L. Susskind, String theory and the principles of black hole complementarity, Phys. Rev. Lett. 71 (1993) 2367 [hep-th/9307168] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. C.R. Stephens, G. ’t Hooft and B.F. Whiting, Black hole evaporation without information loss, Class. Quant. Grav. 11 (1994) 621 [gr-qc/9310006] [INSPIRE].

  20. G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [INSPIRE].

  21. L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. R. Bousso, A covariant entropy conjecture, JHEP 07 (1999) 004 [hep-th/9905177] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. R. Bousso, Joint group meeting, Berkeley U.S.A. February 16 2011.

  24. R. Bousso, to appear.

  25. B.S. DeWitt, Quantum theory of gravity. 1. The canonical theory, Phys. Rev. 160 (1967) 1113 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  26. L. Susskind, The cosmic landscape: string theory and the illusion of intelligent design, chapter 11, Little, Brown and Company, New York U.S.A. (2005).

  27. B. Carter, The anthropic principle in cosmology, in Confrontation of cosmological theories with observational data, M.S. Longair ed., Reidel, Dordrecht The Netherlands (1974), pg. 291.

    Google Scholar 

  28. J. Garriga and A. Vilenkin, Prediction and explanation in the multiverse, Phys. Rev. D 77 (2008) 043526 [arXiv:0711.2559] [INSPIRE].

    ADS  Google Scholar 

  29. J. Garriga, A.H. Guth and A. Vilenkin, Eternal inflation, bubble collisions and the persistence of memory, Phys. Rev. D 76 (2007) 123512 [hep-th/0612242] [INSPIRE].

    ADS  Google Scholar 

  30. B. Freivogel, M. Kleban, A. Nicolis and K. Sigurdson, Eternal inflation, bubble collisions and the disintegration of the persistence of memory, JCAP 08 (2009) 036 [arXiv:0901.0007] [INSPIRE].

    ADS  Google Scholar 

  31. R. Bousso, B. Freivogel and I.-S. Yang, Properties of the scale factor measure, Phys. Rev. D 79 (2009) 063513 [arXiv:0808.3770] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. A.D. Linde, Sinks in the landscape, Boltzmann brains and the cosmological constant problem, JCAP 01 (2007) 022 [hep-th/0611043] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. M. Noorbala and V. Vanchurin, Geocentric cosmology: a new look at the measure problem, arXiv:1006.4148 [INSPIRE].

  34. G. Dvali, Black holes and large-N species solution to the hierarchy problem, Fortsch. Phys. 58 (2010) 528 [arXiv:0706.2050] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. G. Dvali and C. Gomez, Quantum information and gravity cutoff in theories with species, Phys. Lett. B 674 (2009) 303 [arXiv:0812.1940] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius and J. Uglum, Black hole complementarity versus locality, Phys. Rev. D 52 (1995) 6997 [hep-th/9506138] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. N. Goheer, M. Kleban and L. Susskind, The trouble with de Sitter space, JHEP 07 (2003) 056 [hep-th/0212209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. T. Banks, W. Fischler and S. Paban, Recurrent nightmares? Measurement theory in de Sitter space, JHEP 12 (2002) 062 [hep-th/0210160] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. W. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].

    ADS  Google Scholar 

  40. G. Gibbons and S. Hawking, Cosmological event horizons, thermodynamics and particle creation, Phys. Rev. D 15 (1977) 2738 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. G. Gibbons and S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. T. Jacobson, Thermodynamics of space-time: the Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. R.-G. Cai and S.P. Kim, First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe, JHEP 02 (2005) 050 [hep-th/0501055] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. R.-G. Cai, L.-M. Cao and Y.-P. Hu, Hawking radiation of apparent horizon in a FRW universe, Class. Quant. Grav. 26 (2009) 155018 [arXiv:0809.1554] [INSPIRE].

    Article  ADS  Google Scholar 

  45. T. Banks and W. Fischler, M theory observables for cosmological space-times, hep-th/0102077 [INSPIRE].

  46. L. Dyson, J. Lindesay and L. Susskind, Is there really a de Sitter/CFT duality?, JHEP 08 (2002) 045 [hep-th/0202163] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. L. Susskind, Twenty years of debate with Stephen, hep-th/0204027 [INSPIRE].

  48. T. Jacobson and R. Parentani, Horizon entropy, Found. Phys. 33 (2003) 323 [gr-qc/0302099] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  49. L. Susskind and J. Lindesay, An introduction to black holes, information and the string theory revolution: the holographic universe, World Scientific, Singapore (2005).

    MATH  Google Scholar 

  50. R. Bousso, B. Freivogel, S. Leichenauer and V. Rosenhaus, Geometric origin of coincidences and hierarchies in the landscape, Phys. Rev. D 84 (2011) 083517 [arXiv:1012.2869] [INSPIRE].

    ADS  Google Scholar 

  51. R. Bousso, Holography in general space-times, JHEP 06 (1999) 028 [hep-th/9906022] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. R. Bousso, The holographic principle, Rev. Mod. Phys. 74 (2002) 825 [hep-th/0203101] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  54. J.D. Bekenstein, Generalized second law of thermodynamics in black hole physics, Phys. Rev. D 9 (1974) 3292 [INSPIRE].

    ADS  Google Scholar 

  55. S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. V.F. Mukhanov and G. Chibisov, Quantum fluctuation and nonsingular universe (in Russian), JETP Lett. 33 (1981) 532 [Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 549] [INSPIRE].

    ADS  Google Scholar 

  57. S. Hawking, The development of irregularities in a single bubble inflationary universe, Phys. Lett. B 115 (1982) 295 [INSPIRE].

    ADS  Google Scholar 

  58. A.A. Starobinsky, Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations, Phys. Lett. B 117 (1982) 175 [INSPIRE].

    ADS  Google Scholar 

  59. A.H. Guth and S. Pi, Fluctuations in the new inflationary universe, Phys. Rev. Lett. 49 (1982) 1110 [INSPIRE].

    Article  ADS  Google Scholar 

  60. J.M. Bardeen, P.J. Steinhardt and M.S. Turner, Spontaneous creation of almost scale-free density perturbations in an inflationary universe, Phys. Rev. D 28 (1983) 679 [INSPIRE].

    ADS  Google Scholar 

  61. S. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  62. P.A. Dirac, Forms of relativistic dynamics, Rev. Mod. Phys. 21 (1949) 392 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. S. Weinberg, Dynamics at infinite momentum, Phys. Rev. 150 (1966) 1313 [INSPIRE].

    Article  ADS  Google Scholar 

  64. M. Burkardt, Light front quantization, Adv. Nucl. Phys. 23 (1996) 1 [hep-ph/9505259] [INSPIRE].

    Article  Google Scholar 

  65. S.J. Brodsky, H.-C. Pauli and S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone, Phys. Rept. 301 (1998) 299 [hep-ph/9705477] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. T. Heinzl, Light cone dynamics of particles and fields, hep-th/9812190 [INSPIRE].

  67. S. Weinberg, The quantum theory of fields volume II, chapter 19, Cambridge University Press, Cambridge U.K. (1996).

    Google Scholar 

  68. M. Schlosshauer, Decoherence and the quantum-to-classical transition, Springer, Berlin/Heidelberg Germany (2007).

    Google Scholar 

  69. S. Weinberg, Cosmology, chapter 10, Oxford University Press, New York U.S.A. (2008).

    Google Scholar 

  70. J. Hartle and S. Hawking, Wave function of the universe, Phys. Rev. D 28 (1983) 2960 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  71. A. Vilenkin, Quantum creation of universes, Phys. Rev. D 30 (1984) 509 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  72. A. Vilenkin, Boundary conditions in quantum cosmology, Phys. Rev. D 33 (1986) 3560 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  73. A.D. Linde, Quantum creation of the inflationary universe, Lett. Nuovo Cim. 39 (1984) 401 [INSPIRE].

    Article  ADS  Google Scholar 

  74. A.D. Linde, Quantum creation of an open inflationary universe, Phys. Rev. D 58 (1998) 083514 [gr-qc/9802038] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  75. D.N. Page, Susskind’s challenge to the Hartle-Hawking no-boundary proposal and possible resolutions, JCAP 01 (2007) 004 [hep-th/0610199] [INSPIRE].

    ADS  Google Scholar 

  76. Y.B. Zel’dovich, Birth of the closed universe and the anthropic principle, Sov. Astron. Lett. 7 (1981) 322.

    ADS  Google Scholar 

  77. A. Vilenkin, Creation of universes from nothing, Phys. Lett. B 117 (1982) 25 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  78. H. Everett, Relative state formulation of quantum mechanics, Rev. Mod. Phys. 29 (1957) 454 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. C.M. Caves and R. Schack, Properties of the frequency operator do not imply the quantum probability postulate, Annals Phys. 315 (2005) 123 [quant-ph/0409144].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  80. A. Aguirre, M. Tegmark and D. Layzer, Born in an infinite universe: a cosmological interpretation of quantum mechanics, arXiv:1008.1066 [INSPIRE].

  81. R. Bousso, B. Freivogel, S. Leichenauer and V. Rosenhaus, Eternal inflation predicts that time will end, Phys. Rev. D 83 (2011) 023525 [arXiv:1009.4698] [INSPIRE].

    ADS  Google Scholar 

  82. M. Tegmark, What does inflation really predict?, JCAP 04 (2005) 001 [astro-ph/0410281] [INSPIRE].

    ADS  Google Scholar 

  83. A.D. Linde and A. Mezhlumian, Stationary universe, Phys. Lett. B 307 (1993) 25 [gr-qc/9304015] [INSPIRE].

    ADS  Google Scholar 

  84. A.D. Linde, D.A. Linde and A. Mezhlumian, From the big bang theory to the theory of a stationary universe, Phys. Rev. D 49 (1994) 1783 [gr-qc/9306035] [INSPIRE].

    ADS  Google Scholar 

  85. A. De Simone, A.H. Guth, M.P. Salem and A. Vilenkin, Predicting the cosmological constant with the scale-factor cutoff measure, Phys. Rev. D 78 (2008) 063520 [arXiv:0805.2173] [INSPIRE].

    ADS  Google Scholar 

  86. R. Bousso, Holographic probabilities in eternal inflation, Phys. Rev. Lett. 97 (2006) 191302 [hep-th/0605263] [INSPIRE].

    Article  ADS  Google Scholar 

  87. R. Bousso and I.-S. Yang, Global–local duality in eternal inflation, Phys. Rev. D 80 (2009) 124024 [arXiv:0904.2386] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  88. B. Feldstein, L.J. Hall and T. Watari, Density perturbations and the cosmological constant from inflationary landscapes, Phys. Rev. D 72 (2005) 123506 [hep-th/0506235] [INSPIRE].

    ADS  Google Scholar 

  89. J. Garriga and A. Vilenkin, Anthropic prediction for Λ and the Q catastrophe, Prog. Theor. Phys. Suppl. 163 (2006) 245 [hep-th/0508005] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  90. D.N. Page, The Born rule dies, JCAP 07 (2009) 008 [arXiv:0903.4888] [INSPIRE].

    ADS  Google Scholar 

  91. D.N. Page, Is our universe likely to decay within 20 billion years?, Phys. Rev. D 78 (2008) 063535 [hep-th/0610079] [INSPIRE].

    ADS  Google Scholar 

  92. R. Bousso and B. Freivogel, A paradox in the global description of the multiverse, JHEP 06 (2007) 018 [hep-th/0610132] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  93. J. Garriga, D. Schwartz-Perlov, A. Vilenkin and S. Winitzki, Probabilities in the inflationary multiverse, JCAP 01 (2006) 017 [hep-th/0509184] [INSPIRE].

    ADS  Google Scholar 

  94. R. Easther, E.A. Lim and M.R. Martin, Counting pockets with world lines in eternal inflation, JCAP 03 (2006) 016 [astro-ph/0511233] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  95. A. De Simone et al., Boltzmann brains and the scale-factor cutoff measure of the multiverse, Phys. Rev. D 82 (2010) 063520 [arXiv:0808.3778] [INSPIRE].

    ADS  Google Scholar 

  96. B. Freivogel and M. Lippert, Evidence for a bound on the lifetime of de Sitter space, JHEP 12 (2008) 096 [arXiv:0807.1104] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  97. L. Dyson, M. Kleban and L. Susskind, Disturbing implications of a cosmological constant, JHEP 10 (2002) 011 [hep-th/0208013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  98. R. Bousso, B. Freivogel and I.-S. Yang, Eternal inflation: the inside story, Phys. Rev. D 74 (2006) 103516 [hep-th/0606114] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  99. R. Bousso, Complementarity in the multiverse, Phys. Rev. D 79 (2009) 123524 [arXiv:0901.4806] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  100. T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

    ADS  Google Scholar 

  101. M.C. Johnson and I.-S. Yang, Escaping the crunch: gravitational effects in classical transitions, Phys. Rev. D 82 (2010) 065023 [arXiv:1005.3506] [INSPIRE].

    ADS  Google Scholar 

  102. S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].

    ADS  Google Scholar 

  103. S. Weinberg, Does gravitation resolve the ambiguity among supersymmetry vacua?, Phys. Rev. Lett. 48 (1982) 1776 [INSPIRE].

    Article  ADS  Google Scholar 

  104. S. Deser and C. Teitelboim, Supergravity has positive energy, Phys. Rev. Lett. 39 (1977) 249 [INSPIRE].

    Article  ADS  Google Scholar 

  105. A. Micu, E. Palti and G. Tasinato, Towards Minkowski vacua in type II string compactifications, JHEP 03 (2007) 104 [hep-th/0701173] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  106. J.J. Blanco-Pillado, R. Kallosh and A.D. Linde, Supersymmetry and stability of flux vacua, JHEP 05 (2006) 053 [hep-th/0511042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  107. D. Krefl and D. Lüst, On supersymmetric Minkowski vacua in IIB orientifolds, JHEP 06 (2006) 023 [hep-th/0603166] [INSPIRE].

    Article  ADS  Google Scholar 

  108. B. Freivogel, G.T. Horowitz and S. Shenker, Colliding with a crunching bubble, JHEP 05 (2007) 090 [hep-th/0703146] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  109. S. Weinberg, The quantum theory of fields volume I, chapter 8, Cambridge University Press, Cambridge U.K. (1995).

    Google Scholar 

  110. J. Maldacena, Vacuum decay into Anti de Sitter space, arXiv:1012.0274 [INSPIRE].

  111. D. Harlow and L. Susskind, Crunches, hats and a conjecture, arXiv:1012.5302 [INSPIRE].

  112. B. Freivogel, Y. Sekino, L. Susskind and C.-P. Yeh, A holographic framework for eternal inflation, Phys. Rev. D 74 (2006) 086003 [hep-th/0606204] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  113. L. Susskind, The census taker’s hat, arXiv:0710.1129 [INSPIRE].

  114. Y. Sekino and L. Susskind, Census taking in the hat: FRW/CFT duality, Phys. Rev. D 80 (2009) 083531 [arXiv:0908.3844] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  115. A. Borde, A.H. Guth and A. Vilenkin, Inflationary space-times are incompletein past directions, Phys. Rev. Lett. 90 (2003) 151301 [gr-qc/0110012] [INSPIRE].

    Article  ADS  Google Scholar 

  116. A. Aguirre, Eternal inflation, past and future, arXiv:0712.0571 [INSPIRE].

  117. R. Bousso, B. Freivogel and I.-S. Yang, Boltzmann babies in the proper time measure, Phys. Rev. D 77 (2008) 103514 [arXiv:0712.3324] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  118. J. Garriga and A. Vilenkin, Recycling universe, Phys. Rev. D 57 (1998) 2230 [astro-ph/9707292] [INSPIRE].

    ADS  Google Scholar 

  119. K.-M. Lee and E.J. Weinberg, Decay of the true vacuum in curved space-time, Phys. Rev. D 36 (1987) 1088 [INSPIRE].

    ADS  Google Scholar 

  120. L. Susskind and L. Thorlacius, Gedanken experiments involving black holes, Phys. Rev. D 49 (1994) 966 [hep-th/9308100] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  121. P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  122. Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    Article  ADS  Google Scholar 

  123. L. Susskind, Addendum to fast scramblers, arXiv:1101.6048 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Nomura.

Additional information

ArXiv ePrint: 1104.2324

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomura, Y. Physical theories, eternal inflation, and the quantum universe. J. High Energ. Phys. 2011, 63 (2011). https://doi.org/10.1007/JHEP11(2011)063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)063

Keywords

Navigation