Skip to main content
Log in

Searching for new physics in the three-body decays of the Higgs-like particle

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We show that the three-body decays of the resonance recently discovered at the LHC are potentially sensitive to effects of new physics. Even if the fully integrated partial decay widths are consistent with the minimal Standard Model there is information that is lost upon integration, which can be uncovered in the differential decay widths. Concentrating on the decay hZ\( \overline{\ell} \), we identify the regions in the three-body phase space in which these effects become especially pronounced and could be detected in future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  4. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].

    Article  ADS  Google Scholar 

  5. J. Ellis and T. You, Updated global analysis of Higgs couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].

    Article  ADS  Google Scholar 

  6. P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, arXiv:1303.3570 [INSPIRE].

  7. W. Altmannshofer, S. Gori and G.D. Kribs, A minimal flavor violating 2HDM at the LHC, Phys. Rev. D 86 (2012) 115009 [arXiv:1210.2465] [INSPIRE].

    ADS  Google Scholar 

  8. Y. Bai, V. Barger, L.L. Everett and G. Shaughnessy, The 2HDM-X and Large Hadron Collider Data, Phys. Rev. D 87 (2013) 115013 [arXiv:1210.4922] [INSPIRE].

    ADS  Google Scholar 

  9. A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Two-Higgs-doublet models and enhanced rates for a 125 GeV Higgs, JHEP 05 (2013) 072 [arXiv:1211.3580] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J. Chang, K. Cheung, P.-Y. Tseng and T.-C. Yuan, Implications on the Heavy CP-even Higgs Boson from Current Higgs Data, Phys. Rev. D 87 (2013) 035008 [arXiv:1211.3849] [INSPIRE].

    ADS  Google Scholar 

  11. A. Celis, V. Ilisie and A. Pich, LHC constraints on two-Higgs doublet models, JHEP 07 (2013) 053 [arXiv:1302.4022] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C.-W. Chiang and K. Yagyu, Implications of Higgs boson search data on the two-Higgs doublet models with a softly broken Z 2 symmetry, JHEP 07 (2013) 160 [arXiv:1303.0168] [INSPIRE].

    Article  ADS  Google Scholar 

  13. A. Barroso, P. Ferreira, I. Ivanov and R. Santos, Metastability bounds on the two Higgs doublet model, JHEP 06 (2013) 045 [arXiv:1303.5098] [INSPIRE].

    Article  ADS  Google Scholar 

  14. B. Grinstein and P. Uttayarat, Carving Out Parameter Space in Type-II Two Higgs Doublets Model, JHEP 06 (2013) 094 [Erratum ibid. 1309 (2013) 110] [arXiv:1304.0028] [INSPIRE].

    Article  ADS  Google Scholar 

  15. Muon Collider/Neutrino Factory collaboration, M.M. Alsharoa et al., Recent progress in neutrino factory and muon collider research within the Muon collaboration, Phys. Rev. ST Accel. Beams 6 (2003) 081001 [hep-ex/0207031] [INSPIRE].

    Article  ADS  Google Scholar 

  16. ILC collaboration, G. Aarons et al., International Linear Collider Reference Design Report Volume 2: Physics at the ILC, arXiv:0709.1893 [INSPIRE].

  17. L. Linssen, A. Miyamoto, M. Stanitzki, H. Weerts and D.J. Feldman, Physics and Detectors at CLIC: CLIC Conceptual Design Report, arXiv:1202.5940 [INSPIRE].

  18. D. Chang, W.-Y. Keung and I. Phillips, CP odd correlation in the decay of neutral Higgs boson into ZZ, W + W , or t \( \overline{t} \), Phys. Rev. D 48 (1993) 3225 [hep-ph/9303226] [INSPIRE].

    ADS  Google Scholar 

  19. A. Skjold and P. Osland, Signals of CP-violation in Higgs decay, Phys. Lett. B 329 (1994) 305 [hep-ph/9402358] [INSPIRE].

    Article  ADS  Google Scholar 

  20. T. Arens and L. Sehgal, Energy spectra and energy correlations in the decay HZZμ + μ μ + μ , Z. Phys. C 66 (1995) 89 [hep-ph/9409396] [INSPIRE].

    ADS  Google Scholar 

  21. B. Grzadkowski and J. Gunion, Using decay angle correlations to detect CP-violation in the neutral Higgs sector, Phys. Lett. B 350 (1995) 218 [hep-ph/9501339] [INSPIRE].

    Article  ADS  Google Scholar 

  22. C. Buszello, I. Fleck, P. Marquard and J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in HZZ\( l_1^{+}l_1^{-}l_2^{+}l_2^{-} \) at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].

    Article  ADS  Google Scholar 

  23. S. Choi, D.J.. Miller, M. Muhlleitner and P. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Bredenstein, A. Denner, S. Dittmaier and M. Weber, Precise predictions for the Higgs-boson decay HW W/ZZ → 4 leptons, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011] [INSPIRE].

    ADS  Google Scholar 

  26. A. Bredenstein, A. Denner, S. Dittmaier and M. Weber, Radiative corrections to the semileptonic and hadronic Higgs-boson decays HW W/ZZ → 4 fermions, JHEP 02 (2007) 080 [hep-ph/0611234] [INSPIRE].

    Article  ADS  Google Scholar 

  27. R.M. Godbole, D.J. Miller and M.M. Muhlleitner, Aspects of CP-violation in the H ZZ coupling at the LHC, JHEP 12 (2007) 031 [arXiv:0708.0458] [INSPIRE].

    Article  ADS  Google Scholar 

  28. Q.-H. Cao, C. Jackson, W.-Y. Keung, I. Low and J. Shu, The Higgs Mechanism and Loop-induced Decays of a Scalar into Two Z Bosons, Phys. Rev. D 81 (2010) 015010 [arXiv:0911.3398] [INSPIRE].

    ADS  Google Scholar 

  29. N.D. Christensen, T. Han and Y. Li, Testing CP-violation in ZZH Interactions at the LHC, Phys. Lett. B 693 (2010) 28 [arXiv:1005.5393] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].

    ADS  Google Scholar 

  31. P. Avery, D. Bourilkov, M. Chen, T. Cheng, A. Drozdetskiy et al., Precision Studies of the Higgs Golden Channel HZZ* → 4l. Part I. Kinematic discriminants from leading order matrix elements, Phys. Rev. D 87 (2013) 055006 [arXiv:1210.0896] [INSPIRE].

    ADS  Google Scholar 

  32. S. Choi, M. Muhlleitner and P. Zerwas, Theoretical Basis of Higgs-Spin Analysis in Hγγ and Zγ Decays, Phys. Lett. B 718 (2013) 1031 [arXiv:1209.5268] [INSPIRE].

    Article  ADS  Google Scholar 

  33. S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].

    ADS  Google Scholar 

  34. CMS collaboration, Study of the Mass and Spin-Parity of the Higgs Boson Candidate Via Its Decays to Z Boson Pairs, Phys. Rev. Lett. 110 (2013) 081803 [arXiv:1212.6639] [INSPIRE].

    Article  ADS  Google Scholar 

  35. CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4l in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002 (2013).

  36. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).

  37. D. Stolarski and R. Vega-Morales, Directly Measuring the Tensor Structure of the Scalar Coupling to Gauge Bosons, Phys. Rev. D 86 (2012) 117504 [arXiv:1208.4840] [INSPIRE].

    ADS  Google Scholar 

  38. A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  39. E.E. Jenkins, A.V. Manohar and M. Trott, Naive Dimensional Analysis Counting of Gauge Theory Amplitudes and Anomalous Dimensions, arXiv:1309.0819 [INSPIRE].

  40. W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    Article  ADS  Google Scholar 

  41. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  ADS  Google Scholar 

  42. B. Grinstein and M.B. Wise, Operator analysis for precision electroweak physics, Phys. Lett. B 265 (1991) 326 [INSPIRE].

    Article  ADS  Google Scholar 

  43. M.E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    Article  ADS  Google Scholar 

  44. B. Holdom and J. Terning, Large corrections to electroweak parameters in technicolor theories, Phys. Lett. B 247 (1990) 88 [INSPIRE].

    Article  ADS  Google Scholar 

  45. G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Golden and L. Randall, Radiative Corrections to Electroweak Parameters in Technicolor Theories, Nucl. Phys. B 361 (1991) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  47. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  48. I. Maksymyk, C. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [INSPIRE].

    ADS  Google Scholar 

  49. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].

    Article  ADS  Google Scholar 

  50. R. Barbieri and A. Strumia, What is the limit on the Higgs mass?, Phys. Lett. B 462 (1999) 144 [hep-ph/9905281] [INSPIRE].

    Article  ADS  Google Scholar 

  51. Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev. D 71 (2005) 075009 [hep-ph/0412166] [INSPIRE].

    ADS  Google Scholar 

  52. CMS collaboration, Search for contact interactions in μ + μ events in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 87 (2013), no. 3032001 [arXiv:1212.4563] [INSPIRE].

  53. ATLAS collaboration, Search for contact interactions and large extra dimensions in dilepton events from pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 87 (2013) 015010 [arXiv:1211.1150] [INSPIRE].

    ADS  Google Scholar 

  54. A.V. Manohar, An Exactly Solvable Model for Dimension Six Higgs Operators and hγγ, arXiv:1305.3927 [INSPIRE].

  55. E.E. Jenkins, A.V. Manohar and M. Trott, On Gauge Invariance and Minimal Coupling, JHEP 09 (2013) 063 [arXiv:1305.0017] [INSPIRE].

    Article  Google Scholar 

  56. T. Appelquist and G.-H. Wu, The electroweak chiral Lagrangian and new precision measurements, Phys. Rev. D 48 (1993) 3235 [hep-ph/9304240] [INSPIRE].

    ADS  Google Scholar 

  57. W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].

    Article  ADS  Google Scholar 

  58. B. Grinstein and M. Trott, A Higgs-Higgs bound state due to new physics at a TeV, Phys. Rev. D 76 (2007) 073002 [arXiv:0704.1505] [INSPIRE].

    ADS  Google Scholar 

  59. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].

    Article  ADS  Google Scholar 

  60. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  61. N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

    Article  ADS  Google Scholar 

  62. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  63. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  64. CMS collaboration, Search for the standard model Higgs boson in the Z boson plus a photon channel in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-006 (2013).

  65. G. Isidori, A.V. Manohar and M. Trott, Probing the nature of the Higgs-like Boson via hVF decays, arXiv:1305.0663 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher W. Murphy.

Additional information

ArXiv ePrint: 1305.6938

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinstein, B., Murphy, C.W. & Pirtskhalava, D. Searching for new physics in the three-body decays of the Higgs-like particle. J. High Energ. Phys. 2013, 77 (2013). https://doi.org/10.1007/JHEP10(2013)077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)077

Keywords

Navigation