Skip to main content
Log in

Stimulated superconductivity at strong coupling

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Stimulating a system with time dependent sources can enhance instabilities, thus increasing the critical temperature at which the system transitions to interesting low-temperature phases such as superconductivity or superfluidity. After reviewing this phenomenon in non-equilibrium BCS theory (and its marginal fermi liquid generalization) we analyze the effect in holographic superconductors. We exhibit a simple regime in which the transition temperature increases parametrically as we increase the frequency of the time-dependent source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.M. Eliashberg, Film superconductivity stimulated by a high-frequency field, JET P Lett. 11 (1970) 114.

    ADS  Google Scholar 

  2. J. Bardeen, L. Cooper and J. Schrieffer, Theory of superconductivity, Phys. Rev. 108 (1957) 1175 [ inSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. J-J. Chang and D.J. Scalapino, Kinetic-equation approach to nonequilibrium superconductivity, Phys. Rev. B 15 (1977) 2651.

    ADS  Google Scholar 

  4. J. Chang and D.J. Scalapino, Nonequilibrium superconductivity, J. Low Temp. Phys. 31 (1978) 1.

    Article  ADS  Google Scholar 

  5. M. Tinkham, Introduction to Superconductivity, 2nd. edition, Dover, Dover U.K. (2004).

    Google Scholar 

  6. A. Robertson and V. Galitski, Nonequilibrium enhancement of Cooper pairing in cold fermion systems, Phys. Rev. A 80 (2009) 063609.

    ADS  Google Scholar 

  7. N.H. Lindner, G. Refael and V. Galitski, Floquet topological insulator in semiconductor quantum wells, Nature Physics 7 (2011) 490 [arXiv:1008.1792]

    Article  ADS  Google Scholar 

  8. A. Robertson, V.M. Galitski and G. Refael, Dynamic stimulation of quantum coherence in systems of lattice bosons, Physical Review Letters 106 (2011), no. 16 165701–+ [arXiv:1011.2208]

  9. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [ inSPIRE].

    Article  ADS  Google Scholar 

  10. K. Murata, S. Kinoshita and N. Tanahashi, Non-equilibrium condensation process in a holographic superconductor, JHEP 07 (2010) 050 [arXiv:1005.0633] [ inSPIRE].

    Article  ADS  Google Scholar 

  11. S.R. Das, T. Nishioka and T. Takayanagi, Probe branes, time-dependent couplings and thermalization in AdS/CFT, JHEP 07 (2010) 071 [arXiv:1005.3348] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. V.E. Hubeny and M. Rangamani, A holographic view on physics out of equilibrium, Adv. High Energy Phys. 2010 (2010) 297916 [arXiv:1006.3675] [ inSPIRE].

    Google Scholar 

  13. K. Hashimoto, N. Iizuka and T. Oka, Rapid thermalization by baryon injection in gauge/gravity duality, Phys. Rev. D 84 (2011) 066005 [arXiv:1012.4463] [ inSPIRE].

    ADS  Google Scholar 

  14. T. Faulkner and J. Polchinski, Semi-Holographic Fermi liquids, JHEP 06 (2011) 012 [arXiv:1001.5049] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. S. Weinberg, Superconductivity for particular theorists, Prog. Theor. Phys. Suppl. 86 (1986) 43 [ inSPIRE].

    Article  ADS  Google Scholar 

  16. S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge University Press, Cambridge U.K. (1996).

    Google Scholar 

  17. R. Flauger, E. Pajer and S. Papanikolaou, A striped holographic superconductor, Phys. Rev. D 83 (2011) 064009 [arXiv:1010.1775] [ inSPIRE].

    ADS  Google Scholar 

  18. S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [ inSPIRE].

    ADS  Google Scholar 

  19. G.T. Horowitz and M.M. Roberts, Holographic superconductors with various condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [ inSPIRE].

    ADS  Google Scholar 

  20. G. Dvali and S. Kachru, New old inflation, hep-th/0309095 [ inSPIRE].

  21. L.D. Landau and E.M. Lifshitz, Quantum mechanics (non-relativistic theory), Course of Theoretical Physics 3, 3rd edition, Butterworth-Heinemann, Oxford U.K. (1981).

  22. R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, Oscillations in the CMB from axion monodromy inflation, JCAP 06 (2010) 009 [arXiv:0907.2916] [ inSPIRE].

    Article  ADS  Google Scholar 

  23. N. Kaloper, E. Silverstein and L. Susskind, Gauge symmetry and localized gravity in M-theory, JHEP 05 (2001) 031 [hep-th/0006192] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [ inSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. D. Marolf and S.F. Ross, Boundary conditions and new dualities: vector fields in AdS/CFT, JHEP 11 (2006) 085 [hep-th/0606113] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Bao.

Additional information

ArXiv ePrint: 1104.4098

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, N., Dong, X., Silverstein, E. et al. Stimulated superconductivity at strong coupling. J. High Energ. Phys. 2011, 123 (2011). https://doi.org/10.1007/JHEP10(2011)123

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)123

Keywords

Navigation