Skip to main content
Log in

Thermodynamics and cosmological constant of non-local field theories from p-adic strings

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We develop the thermodynamics of field theories characterized by non-local propagators. We analyze the partition function and main thermodynamic properties arising from perturbative thermal loops. We focus on the p-adic models associated with the tachyon phenomenology in string theories. We reproduce well known features of these theories, but also obtain many new results. In particular, we explain how to maintain consistency of such non-local theories by avoiding the appearance of ghosts at finite temperature. As a consequence of this fact, the vacuum energy in p-adic theories becomes positive. It is also hierarchically suppressed, and we explore the parameter space where it is consistent with the observed value of the cosmological constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Noncommutative Geometry and String Field Theory, Nucl. Phys. B 268 (1986) 253 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. V.A. Kostelecky and S. Samuel, The Static Tachyon Potential in the Open Bosonic String Theory, Phys. Lett. B 207 (1988) 169 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. V.A. Kostelecky and S. Samuel, On a Nonperturbative Vacuum for the Open Bosonic String, Nucl. Phys. B 336 (1990) 263 [SPIRES].

    Article  ADS  Google Scholar 

  4. I.Y. Aref’eva, A.S. Koshelev, D.M. Belov and P.B. Medvedev, Tachyon condensation in cubic superstring field theory, Nucl. Phys. B 638 (2002) 3 [hep-th/0011117] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. I.Y. Aref’eva, L.V. Joukovskaya and A.S. Koshelev, Time evolution in superstring field theory on non-BPS brane. I: Rolling tachyon and energy-momentum conservation, JHEP 09 (2003) 012 [hep-th/0301137] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Fujita and H. Hata, Rolling tachyon solution in vacuum string field theory, Phys. Rev. D 70 (2004) 086010 [hep-th/0403031] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. T. Erler, Level truncation and rolling the tachyon in the lightcone basis for open string field theory, hep-th/0409179 [SPIRES].

  8. G. Calcagni and G. Nardelli, Tachyon solutions in boundary and cubic string field theory, Phys. Rev. D 78 (2008) 126010 [arXiv:0708.0366] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv. Theor. Math. Phys. 10 (2006) 433 [hep-th/0511286] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  10. Y. Okawa, Comments on Schnabl’s analytic solution for tachyon condensation in Witten’s open string field theory, JHEP 04 (2006) 055 [hep-th/0603159] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. M. Kiermaier, Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for marginal deformations in open string field theory, JHEP 01 (2008) 028 [hep-th/0701249] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Schnabl, Comments on marginal deformations in open string field theory, Phys. Lett. B 654 (2007) 194 [hep-th/0701248] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. E. Coletti, I. Sigalov and W. Taylor, Taming the tachyon in cubic string field theory, JHEP 08 (2005) 104 [hep-th/0505031] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. I. Ellwood, Rolling to the tachyon vacuum in string field theory, JHEP 12 (2007) 028 [arXiv:0705.0013] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. N. Jokela, M. Jarvinen, E. Keski-Vakkuri and J. Majumder, Disk Partition Function and Oscillatory Rolling Tachyons, J. Phys. A 41 (2008) 015402 [arXiv:0705.1916] [SPIRES].

    MathSciNet  Google Scholar 

  16. W. Taylor and B. Zwiebach, D-branes, tachyons and string field theory, hep-th/0311017 [SPIRES].

  17. C. de Rham, The Effective Field Theory of Codimension-two Branes, JHEP 01 (2008) 060 [arXiv:0707.0884] [SPIRES].

    Article  Google Scholar 

  18. P.G.O. Freund and M. Olson, Nonarchimedean strings, Phys. Lett. B 199 (1987) 186 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. P.G.O. Freund and E. Witten, Adelic string amplitudes, Phys. Lett. B 199 (1987) 191 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. L. Brekke, P.G.O. Freund, M. Olson and E. Witten, Nonarchimedean String Dynamics, Nucl. Phys. B 302 (1988) 365 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. N. Moeller and B. Zwiebach, Dynamics with infinitely many time derivatives and rolling tachyons, JHEP 10 (2002) 034 [hep-th/0207107] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. B. Dragovich, Zeta strings, hep-th/0703008 [SPIRES].

  23. B. Dragovich, Zeta Nonlocal Scalar Fields, Theor. Math. Phys. 157 (2008) 1671 [arXiv:0804.4114] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  24. M.R. Douglas and S.H. Shenker, Strings in Less Than One-Dimension, Nucl. Phys. B 335 (1990) 635 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. D.J. Gross and A.A. Migdal, Nonperturbative Solution of the Ising Model on a Random Surface, Phys. Rev. Lett. 64 (1990) 717 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. E. Brézin and V.A. Kazakov, Exactly solvable field theories of closed strings, Phys. Lett. B 236 (1990) 144 [SPIRES].

    ADS  Google Scholar 

  27. T. Biswas, M. Grisaru and W. Siegel, LinearRegge trajectories from worldsheet lattice parton field theory, Nucl. Phys. B 708 (2005) 317 [hep-th/0409089] [SPIRES].

    Article  ADS  Google Scholar 

  28. D. Ghoshal, p-adic string theories provide lattice discretization to the ordinary string worldsheet, Phys. Rev. Lett. 97 (2006) 151601 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. R.J. Szabo, Quantum Field Theory on Noncommutative Spaces, Phys. Rept. 378 (2003) 207 [hep-th/0109162] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  31. S. Hossenfelder, Self-consistency in theories with a minimal length, Class. Quant. Grav. 23 (2006) 1815 [hep-th/0510245] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. S. Hossenfelder, Interpretation of quantum field theories with a minimal length scale, Phys. Rev. D 73 (2006) 105013 [hep-th/0603032] [SPIRES].

    ADS  Google Scholar 

  33. S. Hossenfelder, A Note on Quantum Field Theories with a Minimal Length Scale, Class. Quant. Grav. 25 (2008) 038003 [arXiv:0712.2811] [SPIRES].

    Article  MathSciNet  Google Scholar 

  34. A. Ludu, R.A. Ionescu and W. Greiner, Generalized KdV Equation for Fluid Dynamics and Quantum Algebras, Found. Phys. 26 (1996) 665 [q-alg/9612006].

    Article  MathSciNet  ADS  Google Scholar 

  35. A. Ludu and J.P. Draayer, Patterns on Liquid Surfaces: Cnoidal Waves, Compactons and Scaling, Physica D 123 (1998) 82 [physics/0003077].

    MathSciNet  ADS  Google Scholar 

  36. T. Biswas, in preparation.

  37. Y. Volovich, Numerical study of nonlinear equations with infinite number of derivatives, J. Phys. A 36 (2003) 8685 [math-ph/0301028] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. V.S. Vladimirov and Y.I. Volovich, On the nonlinear dynamical equation in the p-adic string theory, Theor. Math. Phys. 138 (2004) 297 [Teor. Mat. Fiz. 138 (2004) 355] [math-ph/0306018] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  39. V.S. Vladimirov, On the equation of the p-adic open string for the scalar tachyon field, math-ph/0507018 [SPIRES].

  40. D.V. Prokhorenko, On some nonlinearintegral equationin the(super)string theory, math-ph/0611068 [SPIRES].

  41. N. Barnaby and N. Kamran, Dynamics with Infinitely Many Derivatives: Variable Coefficient Equations, JHEP 12 (2008) 022 [arXiv:0809.4513] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. G. Calcagni, M. Montobbio and G. Nardelli, Localization of nonlocal theories, Phys. Lett. B 662 (2008) 285 [arXiv:0712.2237] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  43. N. Barnaby, T. Biswas and J.M. Cline, p-adic inflation, JHEP 04 (2007) 056 [hep-th/0612230] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. J.E. Lidsey, Stretching the inflaton potential with kinetic energy, Phys. Rev. D 76 (2007) 043511 [hep-th/0703007] [SPIRES].

    ADS  Google Scholar 

  45. N.J. Nunes and D.J. Mulryne, Non-linear non-local Cosmology, AIP Conf. Proc. 1115 (2009) 329 [arXiv:0810.5471] [SPIRES].

    Article  ADS  Google Scholar 

  46. N. Barnaby and J.M. Cline, Large NonGaussianity from Nonlocal Inflation, JCAP 07 (2007) 017 [arXiv:0704.3426] [SPIRES].

    ADS  Google Scholar 

  47. N. Barnaby and J.M. Cline, Predictions for NonGaussianity from Nonlocal Inflation, JCAP 06 (2008) 030 [arXiv:0802.3218] [SPIRES].

    ADS  Google Scholar 

  48. I.Y. Aref’eva and L.V.Joukovskaya, Time lumps in nonlocal stringy models and cosmological applications, JHEP 10 (2005) 087 [hep-th/0504200] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. I.Y. Aref’eva, A.S. Koshelev and S.Y. Vernov, Crossing of the w=-1 Barrier by D3-brane Dark Energy Model, Phys. Rev. D 72 (2005) 064017 [astro-ph/0507067] [SPIRES].

    ADS  Google Scholar 

  50. I.Y.Aref’eva, L.V. Joukovskaya and S.Y. Vernov, Bouncing and Accelerating Solutions in Nonlocal Stringy Models, JHEP 07 (2007) 087 [hep-th/0701184] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. T. Biswas, A. Mazumdar and W. Siegel, Bouncing universes in string-inspired gravity, JCAP 03 (2006) 009 [hep-th/0508194] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  52. T. Biswas, T. Koivisto and A. Mazumdar, Resolution of the Big Crunch/Bang Singularity in Non-local Higher Derivative theories of Gravity, in preparation.

  53. G. Calcagni and G. Nardelli, Cosmological rolling solutions of nonlocal theories, Int. J. Mod. Phys. D 19 (2010) 329 [arXiv:0904.4245] [SPIRES].

    ADS  Google Scholar 

  54. G. Calcagni and G. Nardelli, Nonlocal instantons and solitons in string models, Phys. Lett. B 669 (2008) 102 [arXiv:0802.4395] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  55. G. Calcagni, M. Montobbio and G. Nardelli, Route to nonlocal cosmology, Phys. Rev. D 76 (2007) 126001 [arXiv:0705.3043] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  56. J.A. Minahan, Quantum corrections in p-adic string theory, hep-th/0105312 [SPIRES].

  57. T. Biswas, J.A.R. Cembranos and J.I. Kapusta, Thermal Duality and Hagedorn Transition from p-adic Strings, Phys. Rev. Lett. 104 (2010) 021601 [arXiv:0910.2274] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. J.L. Davis, F. Larsen and N. Seiberg, Heterotic strings in two dimensions and new stringy phase transitions, JHEP 08 (2005) 035 [hep-th/0505081] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. N. Seiberg, Long strings, anomaly cancellation, phase transitions, T-duality and locality in the 2d heterotic string, JHEP 01 (2006) 057 [hep-th/0511220] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  60. J.L. Davis, The moduli space and phase structure of heterotic strings in two dimensions, Phys. Rev. D 74 (2006) 026004 [hep-th/0511298] [SPIRES].

    ADS  Google Scholar 

  61. A.A. Tseytlin and C. Vafa, Elements of string cosmology, Nucl. Phys. B 372 (1992) 443 [hep-th/9109048] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  62. R.H. Brandenberger and C. Vafa, Superstrings in the Early Universe, Nucl. Phys. B 316 (1989) 391 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  63. S. Alexander and T. Biswas, The cosmological BCS mechanism and the Big Bang Singularity, Phys. Rev. D 80 (2009) 023501 [arXiv:0807.4468] [SPIRES].

    ADS  Google Scholar 

  64. T. Biswas, The Hagedorn Soup and an Emergent Cyclic Universe, arXiv:0801.1315 [SPIRES].

  65. B. Greene, D. Kabat and S. Marnerides, Bouncing and cyclic string gas cosmologies, Phys. Rev. D 80 (2009) 063526 [arXiv:0809.1704] [SPIRES].

    ADS  Google Scholar 

  66. R. Danos, A.R. Frey and A. Mazumdar, Interaction rates in string gas cosmology, Phys. Rev. D 70 (2004)106010 [hep-th/0409162] [SPIRES].

    ADS  Google Scholar 

  67. D.P. Skliros and M.B. Hindmarsh, Large Radius Hagedorn Regime in String Gas Cosmology, Phys. Rev. D 78 (2008) 063539 [arXiv:0712.1254] [SPIRES].

    ADS  Google Scholar 

  68. A. Nayeri, R.H. Brandenberger and C. Vafa, Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology, Phys. Rev. Lett. 97 (2006) 021302 [hep-th/0511140] [SPIRES].

    Article  ADS  Google Scholar 

  69. R.H. Brandenberger, A. Nayeri, S.P. Patil and C. Vafa, String gas cosmology and structure formation, Int. J. Mod. Phys. A 22 (2007) 3621 [hep-th/0608121] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  70. R.H. Brandenberger, String gas cosmology and structure formation: A brief review, Mod. Phys. Lett. A 22 (2007) 1875 [hep-th/0702001] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  71. T. Biswas, R. Brandenberger, A. Mazumdar and W. Siegel, Non-perturbative gravity, Hagedorn bounce and CMB, JCAP 12 (2007) 011 [hep-th/0610274] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  72. B. Grinstein, D. O’Connell and M.B. Wise, The Lee-Wick standard model, Phys. Rev. D 77 (2008) 025012 [arXiv:0704.1845] [SPIRES].

    ADS  Google Scholar 

  73. T.D. Lee and G.C. Wick, Finite Theory of Quantum Electrodynamics, Phys. Rev. D2 (1970) 1033 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  74. J.W. Moffat and V.T. Toth, Redesigning Electroweak Theory: Does the Higgs Particle Exist?, arXiv:0908.0780 [SPIRES].

  75. J.W. Moffat and V.T. Toth, A finite electroweak model without a Higgs particle, arXiv:0812.1991 [SPIRES].

  76. J.W. Moffat, Electroweak Model Without A Higgs Particle, arXiv:0709.4269 [SPIRES].

  77. P.G.O. Freund and M. Olson, Nonarchimedean strings, Phys. Lett. B 199 (1987) 186 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  78. P.G.O. Freund and E. Witten, Adelic string amplitudes, Phys. Lett. B 199 (1987) 191 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  79. L. Brekke, P.G.O. Freund, M. Olson and E. Witten, Nonarchimedean String Dynamics, Nucl. Phys. B 302 (1988) 365 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  80. P.H. Frampton and Y. Okada, The p-adic string N point function, Phys. Rev. Lett. 60 (1988) 484 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  81. P.H. Frampton and Y. Okada, Effective scalar field theory of p-adic string, Phys. Rev. D 37 (1988) 3077 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  82. A.A. Gerasimov and S.L. Shatashvili, On exact tachyon potential in open string field theory, JHEP 10 (2000) 034 [hep-th/0009103] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  83. D. Ghoshal and A. Sen, Tachyon condensation and brane descent relations in p-adic string theory, Nucl. Phys. B 584 (2000) 300 [hep-th/0003278] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  84. J.A. Minahan, Mode interactions of the tachyon condensate in p-adic string theory, JHEP 03 (2001) 028 [hep-th/0102071] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  85. T. Biswas, J.A.R. Cembranos and J.I. Kapusta, Finite Temperature Solitons in Non-Local Field Theories from p-Adic Strings, arXiv:1006.4098 [SPIRES].

  86. J.I. Kapusta and C. Gale, Finite Temperature Field Theory, 2nd edition, Cambridge University Press, Cambridge U.K. (2006).

    Book  MATH  Google Scholar 

  87. B. Sathiapalan, Vortices on the String World Sheet and Constraints on Toral Compactification, Phys. Rev. D 35 (1987) 3277 [SPIRES].

    ADS  Google Scholar 

  88. Y.I. Kogan, Vortices on the World Sheet and String’s Critical Dynamics, JETP Lett. 45 (1987) 709 [Pisma Zh. Eksp. Teor. Fiz. 45 (1987) 556] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  89. J.J. Atick and E. Witten, The Hagedorn Transition and the Number of Degrees of Freedom of String Theory, Nucl. Phys. B 310 (1988) 291 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  90. J. Polchinski, Evaluation of the One Loop String Path Integral, Commun. Math. Phys. 104 (1986) 37 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  91. B. Sathiapalan and N. Sircar, Can the Hagedorn Phase Transition be explained from Matrix Model for Strings?, JHEP 08 (2008) 019 [arXiv:0805.0076] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  92. K.R. Dienes and M. Lennek, Re-identifying the Hagedorn transition, hep-th/0505233 [SPIRES].

  93. N. Deo, S. Jain, O. Narayan and C.-I. Tan, The Effect of topology on the thermodynamic limit for a string gas, Phys. Rev. D 45 (1992) 3641 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  94. N. Deo, S. Jain and C.-I. Tan, String statistical mechanics above Hagedorn energy density, Phys. Rev. D 40 (1989) 2626 [SPIRES].

    ADS  Google Scholar 

  95. N. Deo, S. Jain and C.-I. Tan, Strings at high-energy densities and complex temperature, Phys. Lett. B 220 (1989) 125 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  96. S. Chaudhuri, Dispelling the Hagedorn myth: Canonical and microcanonical strings, hep-th/0506143 [SPIRES].

  97. A.V. Smilga, Ghost-free higher-derivative theory, Phys. Lett. B 632 (2006) 433 [hep-th/0503213] [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. R. Cembranos.

Additional information

ArXiv ePrint: 1005.0430

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, T., Cembranos, J.A.R. & Kapusta, J.I. Thermodynamics and cosmological constant of non-local field theories from p-adic strings. J. High Energ. Phys. 2010, 48 (2010). https://doi.org/10.1007/JHEP10(2010)048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2010)048

Keywords

Navigation