Skip to main content
Log in

Numerical elimination and moduli space of vacua

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose a new computational method to understand the vacuum moduli space of (supersymmetric) field theories. By combining numerical algebraic geometry (NAG) and elimination theory, we develop a powerful, efficient, and parallelizable algorithm to extract important information such as the dimension, branch structure, Hilbert series and subsequent operator counting, as well as variation according to coupling constants and mass parameters. We illustrate this method on a host of examples from gauge theory, string theory, and algebraic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gray, Y.-H. He, V. Jejjala and B.D. Nelson, Vacuum geometry and the search for new physics, Phys. Lett. B 638 (2006) 253 [hep-th/0511062] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. J. Gray, Y.-H. He, V. Jejjala and B.D. Nelson, Exploring the vacuum geometry of N = 1 gauge theories, Nucl. Phys. B 750 (2006) 1 [hep-th/0604208] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Hanany, E.E. Jenkins, A.V. Manohar and G. Torri, Hilbert Series for Flavor Invariants of the Standard Model, JHEP 03 (2011) 096 [arXiv:1010.3161] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. Y.-H. He, P. Candelas, A. Hanany, A. Lukas and B. Ovrut eds. Computational Algebraic Geometry in String and Gauge Theory, Advances in High Energy Physics, Special Issue, Hindawi publishing (2012).

  5. J. Gray, A. Hanany, Y.-H. He, V. Jejjala and N. Mekareeya, SQCD: a Geometric Apercu, JHEP 05 (2008) 099 [arXiv:0803.4257] [INSPIRE].

    Article  ADS  Google Scholar 

  6. J. Gray, A Simple Introduction to Grobner Basis Methods in String Phenomenology, Adv. High Energy Phys. 2011 (2011) 217035 [arXiv:0901.1662] [INSPIRE].

    Google Scholar 

  7. D.A. Cox, J. Little and D. O’Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd ed., Undergraduate Texts in Mathematics, Springer-Verlag New York, Inc., Secaucus, NJ, U.S.A. (2007).

  8. J.C. Faugère, A new efficient algorithm for computing groebner bases (F 4 ), J.Pure Appl. Algebra 139 (1999) 61.

    Article  MathSciNet  MATH  Google Scholar 

  9. J.C. Faugère. A new efficient algorithm for computing gröbner bases without reduction to zero (F 5 ), in ISSAC02: Proceedings of the 2002 international symposium on Symbolic and algebraic computation, ACM, New York, NY, U.S.A. (2002), pg. 75–83.

  10. V.P. Gerdt, Involutive Algorithms for Computing Groebner Bases, math/0501111.

  11. W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 3-1-3A computer algebra system for polynomial computations, (2011) [www.singular.uni-kl.de].

  12. CoCoA team, CoCoA, a system for doing Computations in Commutative Algebra [cocoa.dima.unige.it].

  13. D.R. Grayson and M.E. Stillman. Macaulay2, a software system for research in algebraic geometry [www.math.uiuc.edu/Macaulay2/].

  14. W. Bosma, J. Cannon and C. Playoust, The magma algebra system i: the user language J. Symb. Comput. 24 (1997) 235.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Gray, Y.-H. He and A. Lukas, Algorithmic Algebraic Geometry and Flux Vacua, JHEP 09 (2006) 031 [hep-th/0606122] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Gray, Y.-H. He, A. Ilderton and A. Lukas, STRINGVACUA: a Mathematica Package for Studying Vacuum Configurations in String Phenomenology, Comput. Phys. Commun. 180 (2009) 107 [arXiv:0801.1508] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. J. Gray, Y.-H. He, A. Ilderton and A. Lukas, A New Method for Finding Vacua in String Phenomenology, JHEP 07 (2007) 023 [hep-th/0703249] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. D.J. Bates, J.D. Hauenstein, A.J. Sommese and C.W. Wampler, Bertini: Software for numerical algebraic geometry, [available at www.nd.edu/˜sommese/bertini].

  19. J. Verschelde, Algorithm 795: Phcpack: a general-purpose solver for polynomial systems by homotopy continuation, ACM Trans. Math. Soft. 25 (1999) 251.

    Article  MATH  Google Scholar 

  20. T. Gunji, S. Kim, M. Kojima, A. Takeda, K. Fujisawa and T. Mizutani, Phom: a polyhedral homotopy continuation method for polynomial systems, Computing 73 (2004) 57.

    Article  MathSciNet  MATH  Google Scholar 

  21. A.P. Morgan, A.J. Sommese and L.T. Watson, Finding all isolated solutions to polynomial systems using hompack, ACM Trans. Math. Softw. 15 (1989) 93.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Gao, T.Y. Li and M. Wu, Algorithm 846: Mixedvol: a software package for mixed-volume computation, ACM Trans. Math. Softw. 31 (2005) 555.

    Article  MathSciNet  MATH  Google Scholar 

  23. T.L. Lee, T.Y. Li and C.H. Tsai, Hom4ps-2.0, a software package for solving polynomial systems by the polyhedral homotopy continuation method, Computing 83 (2008) 109.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Mehta, Lattice vs. Continuum: Landau Gauge Fixing andt Hooft-Polyakov Monopoles, Ph.D. thesis, Australasian Digital Theses Program, University of Adelaide, Australia (2009).

  25. D. Mehta, A. Sternbeck, L. von Smekal and A.G. Williams, Lattice Landau Gauge and Algebraic Geometry, PoS (QCD-TNT09) 025.

  26. C. Hughes, D. Mehta and J.-I. Skullerud, Enumerating Gribov copies on the lattice, Annals Phys. 331 (2013) 188 [arXiv:1203.4847] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. D. Mehta, Finding All the Stationary Points of a Potential Energy Landscape via Numerical Polynomial Homotopy Continuation Method, Phys. Rev. E 84 (2011) 025702 [arXiv:1104.5497] [INSPIRE].

    ADS  Google Scholar 

  28. M. Kastner and D. Mehta, Phase Transitions Detached from Stationary Points of the Energy Landscape, Phys. Rev. Lett. 107 (2011) 160602 [arXiv:1108.2345] [INSPIRE].

    Article  ADS  Google Scholar 

  29. D. Mehta, J.D. Hauenstein and M. Kastner, Energy landscape analysis of the two-dimensional nearest-neighbor ϕ 4 model, Phys. Rev. E 85 (2012) 061103 [arXiv:1202.3320] [INSPIRE].

    ADS  Google Scholar 

  30. R. Nerattini, M. Kastner, D. Mehta and L. Casetti, Exploring the energy landscape of XY models, Phys. Revi. E 87 (2013) 032140 [arXiv:1211.4800] [INSPIRE].

    ADS  Google Scholar 

  31. M. Maniatis and D. Mehta, Minimizing Higgs Potentials via Numerical Polynomial Homotopy Continuation, Eur. Phys. J. Plus 127 (2012) 91 [arXiv:1203.0409] [INSPIRE].

    Article  Google Scholar 

  32. J. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, The Stability Of R-Parity In Supersymmetric Models Extended By U(1) B−L , Phys. Rev. D 88 (2013) 015033 [arXiv:1212.4146] [INSPIRE].

    ADS  Google Scholar 

  33. D. Mehta, Numerical Polynomial Homotopy Continuation Method and String Vacua, Adv. High Energy Phys. 2011 (2011) 263937 [arXiv:1108.1201] [INSPIRE].

    Google Scholar 

  34. D. Mehta, Y.-H. He and J.D. Hauenstein, Numerical Algebraic Geometry: A New Perspective on String and Gauge Theories, JHEP 07 (2012) 018 [arXiv:1203.4235] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. Y.-H. He, D. Mehta, M. Niemerg, M. Rummel and A. Valeanu, Exploring the Potential Energy Landscape Over a Large Parameter-Space, JHEP 07 (2013) 050 [arXiv:1301.0946] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. D. Martinez-Pedrera, D. Mehta, M. Rummel and A. Westphal, Finding all flux vacua in an explicit example, JHEP 06 (2013) 110 [arXiv:1212.4530] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. J.D. Hauenstein and A.J. Sommese, Witness sets of projections, Appl. Math. Comput. 217 (2010) 3349.

    Article  MathSciNet  MATH  Google Scholar 

  38. J.D. Hauenstein and A.J. Sommese, Membership tests for images of algebraic sets by linear projections, Appl. Math. Comput. 219 (2013) 6809.

    Article  MathSciNet  Google Scholar 

  39. J.C. Migliore, Introduction to liaison theory and deficiency modules, Progress in Mathematics 165, Birkhäuser Boston Inc., Boston, MA,U.S.A. (1998).

  40. J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton Series in Physics, Princeton University Press, Princeton, U.S.A. (1992).

    Google Scholar 

  41. M.A. Luty and W. Taylor, Varieties of vacua in classical supersymmetric gauge theories, Phys. Rev. D 53 (1996) 3399 [hep-th/9506098] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. P.C. Argyres, An Introduction to Global Supersymmetry, lecture notes (2001) [http://www.physics.uc.edu/˜argyres/661/susy2001.pdf].

  43. F. Buccella, J. Derendinger, S. Ferrara and C.A. Savoy, Patterns of Symmetry Breaking in Supersymmetric Gauge Theories, Phys. Lett. B 115 (1982) 375 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. R. Gatto and G. Sartori, Consequences of the Complex Character of the Internal Symmetry in Supersymmetric Theories, Commun. Math. Phys. 109 (1987) 327 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. C. Procesi and G. Schwarz, The geometry of orbit spaces and gauge symmetry breaking in supersymmetric gauge theories, Phys. Lett. B 161 (1985) 117 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. G. Greuel and G. Pfister, A Singular Introduction to Commutative Algebra, Springer (2002).

  48. D. Wang, Elimination methods, Texts and Monographs in Symbolic Computation, Springer-Verlag, Vienna, Austria (2001).

  49. A.J. Sommese and C.W. Wampler, The numerical solution of systems of polynomials arising in Engineering and Science, World Scientific Publishing Company (2005).

  50. J.D. Hauenstein and C.W. Wampler, Isosingular sets and deflation, Found. Comp. Math. 13 (2013) 371.

    Article  MathSciNet  MATH  Google Scholar 

  51. Z.A. Griffin, J.D. Hauenstein, C. Peterson and A.J. Sommese, Numerical computation of the Hilbert function of a zero-scheme, to appear in Springer Proceedings in Mathematics & Statistics.

  52. D.J. Bates, J.D. Hauenstein, T.M. McCoy, C. Peterson and A.J. Sommese, Recovering exact results from inexact numerical data in algebraic geometry, Exp. Math. 22 (2013) 38.

    Article  MathSciNet  MATH  Google Scholar 

  53. A.K. Lenstra, H.W. Lenstra Jr. and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982) 515.

    Article  MathSciNet  MATH  Google Scholar 

  54. H. Ferguson and D. Bailey, A polynomial time, numerically stable integer relation algorithm, technical report (1991).

  55. J.D. Hauenstein, A.J. Sommese and C.W. Wampler, Regeneration homotopies for solving systems of polynomials, Math. Comp. 80 (2011) 345.

    Article  MathSciNet  MATH  Google Scholar 

  56. N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys. 252 (2004) 359 [hep-th/0404225] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. M. Mariño and N. Wyllard, A Note on instanton counting for N = 2 gauge theories with classical gauge groups, JHEP 05 (2004) 021 [hep-th/0404125] [INSPIRE].

    Article  ADS  Google Scholar 

  58. H. Nakajima and K. Yoshioka, Instanton counting on blowup. 1., Invent. Math. 162 (2005) 313 [math/0306198] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. A. Hanany, N. Mekareeya and S.S. Razamat, Hilbert Series for Moduli Spaces of Two Instantons, JHEP 01 (2013) 070 [arXiv:1205.4741] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert Series of the One Instanton Moduli Space, JHEP 06 (2010) 100 [arXiv:1005.3026] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. P. Candelas, A. Dale, C. Lütken and R. Schimmrigk, Complete Intersection Calabi-Yau Manifolds, Nucl. Phys. B 298 (1988) 493 [INSPIRE].

    Article  ADS  Google Scholar 

  62. L.B. Anderson, Y.-H. He and A. Lukas, Heterotic Compactification, An Algorithmic Approach, JHEP 07 (2007) 049 [hep-th/0702210] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. P. Candelas, X. de la Ossa, Y.-H. He and B. Szendroi, Triadophilia: A Special Corner in the Landscape, Adv. Theor. Math. Phys. 12 (2008) 429 [arXiv:0706.3134] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  64. L. Blum, F. Cucker, M. Shub and S. Smale, Complexity and real computation, Springer-Verlag, New York, U.S.A. (1998).

    Book  Google Scholar 

  65. J.D. Hauenstein and F. Sottile, alphaCertified: Software for certifying numerical solutions to polynomial equations [www.math.tamu.edu/˜sottile/research/stories/alphaCertified].

  66. J.D. Hauenstein and F. Sottile, Algorithm 921: alphaCertified: Certifying solutions to polynomial systems, ACM TOMS 38 (2012) 28.

    Article  MathSciNet  Google Scholar 

  67. D. Mehta, J.D. Hauenstein and D.J. Wales, Certifying the Potential Energy Landscape, Chem. Phys. 138 (2013) 171101 [arXiv:1302.6265] [INSPIRE].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Hui He.

Additional information

ArXiv ePrint: 1210.6038

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauenstein, J., He, YH. & Mehta, D. Numerical elimination and moduli space of vacua. J. High Energ. Phys. 2013, 83 (2013). https://doi.org/10.1007/JHEP09(2013)083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)083

Keywords

Navigation