Skip to main content
Log in

Top quarks as a window to string resonances

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the discovery potential of string resonances decaying to \( t\bar{t} \) final state at the LHC. We point out that top quark pair production is a promising and an advantageous channel for studying such resonances, due to their low Standard Model background and unique kinematics. We study the invariant mass distribution and angular dependence of the top pair production cross section via exchanges of string resonances. The mass ratios of these resonances and the unusual angular distribution may help identify their fundamental properties and distinguish them from other new physics. We find that string resonances for a string scale below 4 TeV can be detected via the \( t\bar{t} \) channel, either from reconstructing the \( t\bar{t} \) semi-leptonic decay or recent techniques in identifying highly boosted tops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Schellekens, Superstring construction, North-Holland, Amsterdam Netherlands (1989) [SPIRES].

    MATH  Google Scholar 

  2. K.R. Dienes, String Theory and the Path to Unification: A Review of Recent Developments, Phys. Rept. 287 (1997) 447 [hep-th/9602045] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. F. Quevedo, Lectures on superstring phenomenology, hep-th/9603074 [SPIRES].

  4. Z. Kakushadze, G. Shiu, S.H.H. Tye and Y. Vtorov-Karevsky, A review of three-family grand unified string models, Int. J. Mod. Phys. A 13 (1998) 2551 [hep-th/9710149] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  5. G.L. Kane, P. Kumar and J. Shao, LHC String Phenomenology, J. Phys. G 34 (2007) 1993 [hep-ph/0610038] [SPIRES].

    ADS  Google Scholar 

  6. G.L. Kane, P. Kumar and J. Shao, Unravelling Strings at the LHC, Phys. Rev. D 77 (2008) 116005 [arXiv:0709.4259] [SPIRES].

    ADS  Google Scholar 

  7. J.J. Heckman, G.L. Kane, J. Shao and C. Vafa, The Footprint of F-theory at the LHC, JHEP 10 (2009) 039 [arXiv:0903.3609] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. L. Aparicio, D.G. Cerdeno and L.E. Ibáñez, Modulus-dominated SUSY -breaking soft terms in F-theory and their test at LHC, JHEP 07 (2008) 099 [arXiv:0805.2943] [SPIRES].

    Article  ADS  Google Scholar 

  9. J.P. Conlon, C.H. Kom, K. Suruliz, B.C. Allanach and F. Quevedo, Sparticle Spectra and LHC Signatures for Large Volume String Compactifications, JHEP 08 (2007) 061 [arXiv:0704.3403] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [SPIRES].

    ADS  Google Scholar 

  11. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [SPIRES].

    ADS  Google Scholar 

  12. G. Shiu and S.H.H. Tye, TeV scale superstring and extra dimensions, Phys. Rev. D 58 (1998) 106007 [hep-th/9805157] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. I. Antoniadis, A Possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. J.D. Lykken, Weak scale superstrings, Phys. Rev. D 54 (1996) 3693 [hep-th/9603133] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. H.L. Verlinde, Holography and compactification, Nucl. Phys. B 580 (2000) 264 [hep-th/9906182] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. B.R. Greene, K. Schalm and G. Shiu, Warped compactifications in M and F-theory, Nucl. Phys. B 584 (2000) 480 [hep-th/0004103] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. G. Shiu, R. Shrock and S.H.H. Tye, Collider signatures from the brane world, Phys. Lett. B 458 (1999) 274 [hep-ph/9904262] [SPIRES].

    ADS  Google Scholar 

  23. S. Cullen, M. Perelstein and M.E. Peskin, TeV strings and collider probes of large extra dimensions, Phys. Rev. D 62 (2000) 055012 [hep-ph/0001166] [SPIRES].

    ADS  Google Scholar 

  24. P. Burikham, T. Figy and T. Han, TeV -scale string resonances at hadron colliders, Phys. Rev. D 71 (2005) 016005 [Erratum ibid. D 71 (2005) 019905] [hep-ph/0411094] [SPIRES].

    ADS  Google Scholar 

  25. D. Chialva, R. Iengo and J.G. Russo, Cross sections for production of closed superstrings at high energy colliders in brane world models, Phys. Rev. D 71 (2005) 106009 [hep-ph/0503125] [SPIRES].

    ADS  Google Scholar 

  26. D. Lüst, S. Stieberger and T.R. Taylor, The LHC String Hunter’s Companion, Nucl. Phys. B 808 (2009) 1 [arXiv:0807.3333] [SPIRES].

    Article  ADS  Google Scholar 

  27. L.A. Anchordoqui et al., Dijet signals for low mass strings at the LHC, Phys. Rev. Lett. 101 (2008) 241803 [arXiv:0808.0497] [SPIRES].

    Article  ADS  Google Scholar 

  28. L.A. Anchordoqui et al., LHC Phenomenology for String Hunters, Nucl. Phys. B 821 (2009) 181 [arXiv:0904.3547] [SPIRES].

    Article  ADS  Google Scholar 

  29. D. Lüst, O. Schlotterer, S. Stieberger and T.R. Taylor, The LHC String Hunter’s Companion (II): Five-Particle Amplitudes and Universal Properties, Nucl. Phys. B 828 (2010) 139 [arXiv:0908.0409] [SPIRES].

    Article  ADS  Google Scholar 

  30. L.A. Anchordoqui, H. Goldberg, S. Nawata and T.R. Taylor, Jet signals for low mass strings at the LHC, Phys. Rev. Lett. 100 (2008) 171603 [arXiv:0712.0386] [SPIRES].

    Article  ADS  Google Scholar 

  31. L.A. Anchordoqui, H. Goldberg, S. Nawata and T.R. Taylor, Direct photons as probes of low mass strings at the LHC, Phys. Rev. D 78 (2008) 016005 [arXiv:0804.2013] [SPIRES].

    ADS  Google Scholar 

  32. L.A. Anchordoqui, H. Goldberg and T.R. Taylor, Decay widths of lowest massiveRegge excitations of open strings, Phys. Lett. B 668 (2008) 373 [arXiv:0806.3420] [SPIRES].

    ADS  Google Scholar 

  33. P. Meade and L. Randall, Black Holes and Quantum Gravity at the LHC, JHEP 05 (2008) 003 [arXiv:0708.3017] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. B. Hassanain, J. March-Russell and J.G. Rosa, On the possibility of light string resonances at the LHC and Tevatron from Randall-Sundrum throats, JHEP 07 (2009) 077 [arXiv:0904.4108] [SPIRES].

    Article  ADS  Google Scholar 

  35. R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [SPIRES].

    Article  ADS  Google Scholar 

  36. R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [SPIRES].

    Article  ADS  Google Scholar 

  37. F. Marchesano, Progress in D-brane model building, Fortsch. Phys. 55 (2007) 491 [hep-th/0702094] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  38. D. Malyshev and H. Verlinde, D-branes at Singularities and String Phenomenology, Nucl. Phys. Proc. Suppl. 171 (2007) 139 [arXiv:0711.2451] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. T. Han, The ’Top Priority’ at the LHC, Int. J. Mod. Phys. A 23 (2008) 4107 [arXiv:0804.3178] [SPIRES].

    ADS  Google Scholar 

  40. I.I.Y. Bigi, Y.L. Dokshitzer, V.A. Khoze, J.H. Kuhn and P.M. Zerwas, Production and Decay Properties of Ultraheavy Quarks, Phys. Lett. B 181 (1986) 157 [SPIRES].

    ADS  Google Scholar 

  41. F. Cornet, J.I. Illana and M. Masip, TeV strings and the neutrino nucleon cross section at ultra-high energies, Phys. Rev. Lett. 86 (2001) 4235 [hep-ph/0102065] [SPIRES].

    Article  ADS  Google Scholar 

  42. J.J. Friess, T. Han and D. Hooper, TeV string state excitation via high energy cosmic neutrinos, Phys. Lett. B 547 (2002) 31 [hep-ph/0204112] [SPIRES].

    ADS  Google Scholar 

  43. ATLAS collaboration, Detector and Physics Performances Technical Design Report, Vol.II, ATLAS TDR 14, CERN-LHCC-99-14.

  44. CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: Physics performance, J. Phys. G 34 (2006) 995 [SPIRES].

    Google Scholar 

  45. V. Barger, T. Han and D.G.E. Walker, Top Quark Pairs at High Invariant Mass: A Model-Independent Discriminator of New Physics at the LHC, Phys. Rev. Lett. 100 (2008) 031801 [hep-ph/0612016] [SPIRES].

    Article  ADS  Google Scholar 

  46. R.M. Godbole, S.D. Rindani, K. Rao and R.K. Singh, Top polarization as a probe of new physics, AIP Conf. Proc. 1200 (2010) 682 [arXiv:0911.3622] [SPIRES].

    Article  ADS  Google Scholar 

  47. K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [SPIRES].

    ADS  Google Scholar 

  48. D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [SPIRES].

    Article  ADS  Google Scholar 

  49. J. Thaler and L.-T. Wang, Strategies to Identify Boosted Tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [SPIRES].

    Article  ADS  Google Scholar 

  50. L.G. Almeida et al., Substructure of high-p T Jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  51. L.G. Almeida, S.J. Lee, G. Perez, I. Sung and J. Virzi, Top Jets at the LHC, Phys. Rev. D 79 (2009) 074012 [arXiv:0810.0934] [SPIRES].

    ADS  Google Scholar 

  52. M. Reece and L.-T. Wang, Randall-Sundrum and Strings, JHEP 07 (2010) 040 [arXiv:1003.5669] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. M. Perelstein and A. Spray, Tensor Reggeons from Warped Space at the LHC, JHEP 10 (2009) 096 [arXiv:0907.3496] [SPIRES].

    Article  ADS  Google Scholar 

  54. G. Shiu, B. Underwood, K.M. Zurek and D.G.E. Walker, Probing the Geometry of Warped String Compactifications at the LHC, Phys. Rev. Lett. 100 (2008) 031601 [arXiv:0705.4097] [SPIRES].

    Article  ADS  Google Scholar 

  55. P. McGuirk, G. Shiu and K.M. Zurek, Phenomenology of Infrared Smooth Warped Extra Dimensions, JHEP 03 (2008) 012 [arXiv:0712.2264] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. F. Marchesano, P. McGuirk and G. Shiu, Open String Wavefunctions in Warped Compactifications, JHEP 04 (2009) 095 [arXiv:0812.2247] [SPIRES].

    Article  ADS  Google Scholar 

  57. G. Shiu, G. Torroba, B. Underwood and M.R. Douglas, Dynamics of Warped Flux Compactifications, JHEP 06 (2008) 024 [arXiv:0803.3068] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. M.R. Douglas, Effective potential and warp factor dynamics, JHEP 03 (2010) 071 [arXiv:0911.3378] [SPIRES].

    Article  ADS  Google Scholar 

  59. O. DeWolfe and S.B. Giddings, Scales and hierarchies in warped compactifications and brane worlds, Phys. Rev. D 67 (2003) 066008 [hep-th/0208123] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  60. S.B. Giddings and A. Maharana, Dynamics of warped compactifications and the shape of the warped landscape, Phys. Rev. D 73 (2006) 126003 [hep-th/0507158] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  61. C.P. Burgess et al., Warped supersymmetry breaking, JHEP 04 (2008) 053 [hep-th/0610255] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Dong.

Additional information

ArXiv ePrint: 1004.5441

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Z., Han, T., Huang, Mx. et al. Top quarks as a window to string resonances. J. High Energ. Phys. 2010, 48 (2010). https://doi.org/10.1007/JHEP09(2010)048

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2010)048

Keywords

Navigation