Skip to main content
Log in

Holographic d-wave superconductors

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct top down models for holographic d-wave superfluids in which the order parameter is a charged spin two field in the bulk. Close to the transition temperature the condensed phase can be captured by a charged spin two field in an R-charged black hole background (downstairs picture) or equivalently by specific graviton perturbations of a spinning black brane (upstairs picture). We analyse the necessary conditions on the mass and the charge of the spin two field for a condensed phase to exist and we discuss the competition of the d-wave phase with other phases such as s-wave superfluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].

    Google Scholar 

  3. J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].

    Google Scholar 

  4. G.T. Horowitz, Introduction to Holographic Superconductors, Lect. Notes Phys. 828 (2011) 313 [arXiv:1002.1722] [INSPIRE].

    Article  ADS  Google Scholar 

  5. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].

    ADS  Google Scholar 

  6. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. G.T. Horowitz, J.E. Santos and D. Tong, Optical conductivity with holographic lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. G.T. Horowitz, J.E. Santos and D. Tong, Further evidence for lattice-induced scaling, JHEP 11 (2012) 102 [arXiv:1209.1098] [INSPIRE].

    Article  ADS  Google Scholar 

  9. S. Nakamura, H. Ooguri and C.-S. Park, Gravity Dual of Spatially Modulated Phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].

    ADS  Google Scholar 

  10. H. Ooguri and C.-S. Park, Holographic End-Point of Spatially Modulated Phase Transition, Phys. Rev. D 82 (2010) 126001 [arXiv:1007.3737] [INSPIRE].

    ADS  Google Scholar 

  11. H. Ooguri and C.-S. Park, Spatially Modulated Phase in Holographic quark-gluon Plasma, Phys. Rev. Lett. 106 (2011) 061601 [arXiv:1011.4144] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Striped instability of a holographic Fermi-like liquid, JHEP 10 (2011) 034 [arXiv:1106.3883] [INSPIRE].

    Article  ADS  Google Scholar 

  13. A. Donos, J.P. Gauntlett and C. Pantelidou, Spatially modulated instabilities of magnetic black branes, JHEP 01 (2012) 061 [arXiv:1109.0471] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Donos and J.P. Gauntlett, Helical superconducting black holes, Phys. Rev. Lett. 108 (2012) 211601 [arXiv:1203.0533] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Donos, J.P. Gauntlett, J. Sonner and B. Withers, Competing orders in M-theory: superfluids, stripes and metamagnetism, JHEP 03 (2013) 108 [arXiv:1212.0871] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. J.-W. Chen, Y.-J. Kao, D. Maity, W.-Y. Wen and C.-P. Yeh, Towards A Holographic Model of D-Wave Superconductors, Phys. Rev. D 81 (2010) 106008 [arXiv:1003.2991] [INSPIRE].

    ADS  Google Scholar 

  18. H.-B. Zeng, Z.-Y. Fan and H.-S. Zong, d-wave Holographic Superconductor Vortex Lattice and Non-Abelian Holographic Superconductor Droplet, Phys. Rev. D 82 (2010) 126008 [arXiv:1007.4151] [INSPIRE].

    ADS  Google Scholar 

  19. J.-W. Chen, Y.-S. Liu and D. Maity, d + id holographic superconductors, JHEP 05 (2011) 032 [arXiv:1103.1714] [INSPIRE].

    Article  ADS  Google Scholar 

  20. D. Gao, Vortex and droplet in holographic D-wave superconductors, Phys. Lett. A 376 (2012) 1705 [arXiv:1112.2422] [INSPIRE].

    Article  ADS  Google Scholar 

  21. X.-H. Ge, S.F. Tu and B. Wang, d-Wave holographic superconductors with backreaction in external magnetic fields, JHEP 09 (2012) 088 [arXiv:1209.4272] [INSPIRE].

    Article  ADS  Google Scholar 

  22. F. Benini, C.P. Herzog and A. Yarom, Holographic Fermi arcs and a d-wave gap, Phys. Lett. B 701 (2011) 626 [arXiv:1006.0731] [INSPIRE].

    Article  ADS  Google Scholar 

  23. F. Benini, C.P. Herzog, R. Rahman and A. Yarom, Gauge gravity duality for d-wave superconductors: prospects and challenges, JHEP 11 (2010) 137 [arXiv:1007.1981] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. G.S. Hartnett and G.T. Horowitz, Geons and spin-2 condensates in the AdS soliton, JHEP 01 (2013) 010 [arXiv:1210.1606] [INSPIRE].

    Article  ADS  Google Scholar 

  25. K. Maeda and T. Okamura, Characteristic length of an AdS/CFT superconductor, Phys. Rev. D 78 (2008) 106006 [arXiv:0809.3079] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. C.P. Herzog, An analytic holographic superconductor, Phys. Rev. D 81 (2010) 126009 [arXiv:1003.3278] [INSPIRE].

    ADS  Google Scholar 

  27. G. Siopsis and J. Therrien, Analytic calculation of properties of holographic superconductors, JHEP 05 (2010) 013 [arXiv:1003.4275] [INSPIRE].

    Article  ADS  Google Scholar 

  28. I. Buchbinder, V. Krykhtin and V. Pershin, On consistent equations for massive spin two field coupled to gravity in string theory, Phys. Lett. B 466 (1999) 216 [hep-th/9908028] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. I. Buchbinder, D. Gitman, V. Krykhtin and V. Pershin, Equations of motion for massive spin-2 field coupled to gravity, Nucl. Phys. B 584 (2000) 615 [hep-th/9910188] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. I. Buchbinder, D. Gitman and V. Pershin, Causality of massive spin-2 field in external gravity, Phys. Lett. B 492 (2000) 161 [hep-th/0006144] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. I. Buchbinder, T. Snegirev and Y. Zinoviev, Cubic interaction vertex of higher-spin fields with external electromagnetic field, Nucl. Phys. B 864 (2012) 694 [arXiv:1204.2341] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys. B 607 (2001) 577 [hep-th/0103198] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. S. Deser and A. Waldron, Inconsistencies of massive charged gravitating higher spins, Nucl. Phys. B 631 (2002) 369 [hep-th/0112182] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. M. Porrati and R. Rahman, Notes on a cure for higher-spin acausality, Phys. Rev. D 84 (2011) 045013 [arXiv:1103.6027] [INSPIRE].

    ADS  Google Scholar 

  35. M. Kulaxizi and R. Rahman, Holographic constraints on a vector boson, JHEP 04 (2013) 164 [arXiv:1212.6265] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. R. Gregory, S. Kanno and J. Soda, Holographic superconductors with higher curvature corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. D. Cassani, G. Dall’Agata and A.F. Faedo, Type IIB supergravity on squashed Sasaki-Einstein manifolds, JHEP 05 (2010) 094 [arXiv:1003.4283] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. K. Skenderis, M. Taylor and D. Tsimpis, A consistent truncation of IIB supergravity on manifolds admitting a Sasaki-Einstein structure, JHEP 06 (2010) 025 [arXiv:1003.5657] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. J.P. Gauntlett and O. Varela, Universal Kaluza-Klein reductions of type IIB to N = 4 supergravity in five dimensions, JHEP 06 (2010) 081 [arXiv:1003.5642] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. J.T. Liu, P. Szepietowski and Z. Zhao, Consistent massive truncations of IIB supergravity on Sasaki-Einstein manifolds, Phys. Rev. D 81 (2010) 124028 [arXiv:1003.5374] [INSPIRE].

    ADS  Google Scholar 

  42. M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].

    Article  ADS  Google Scholar 

  43. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  45. K. Skenderis and M. Taylor, Kaluza-Klein holography, JHEP 05 (2006) 057 [hep-th/0603016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. H. Kim, L. Romans and P. van Nieuwenhuizen, The Mass Spectrum of Chiral N = 2 D = 10 Supergravity on S 5, Phys. Rev. D 32 (1985) 389 [INSPIRE].

    ADS  Google Scholar 

  47. G. Arutyunov and S. Frolov, Quadratic action for Type IIB supergravity on AdS 5 × S 5, JHEP 08 (1999) 024 [hep-th/9811106] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. S.S. Gubser, Einstein manifolds and conformal field theories, Phys. Rev. D 59 (1999) 025006 [hep-th/9807164] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  49. A. Ceresole, G. Dall’Agata, R. D’Auria and S. Ferrara, Spectrum of type IIB supergravity on AdS 5 × T 11 : Predictions on N = 1 SCFTs, Phys. Rev. D 61 (2000) 066001 [hep-th/9905226] [INSPIRE].

  50. A. Ceresole, G. Dall’Agata and R. D’Auria, K K spectroscopy of type IIB supergravity on AdS 5 × T 11, JHEP 11 (1999) 009 [hep-th/9907216] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in D = 4, N = 4 SYM at large-N , Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  52. G. Arutyunov and S. Frolov, Some cubic couplings in type IIB supergravity on AdS 5 × S 5 and three point functions in SYM(4) at large-N , Phys. Rev. D 61 (2000) 064009 [hep-th/9907085] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  53. K. Skenderis and M. Taylor, Holographic Coulomb branch vevs, JHEP 08 (2006) 001 [hep-th/0604169] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. K. Skenderis and M. Taylor, Anatomy of bubbling solutions, JHEP 09 (2007) 019 [arXiv:0706.0216] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. S. Ferrara, M. Porrati and V.L. Telegdi, G = 2 as the natural value of the tree level gyromagnetic ratio of elementary particles, Phys. Rev. D 46 (1992) 3529 [INSPIRE].

    ADS  Google Scholar 

  56. K.-Y. Kim, K. Skenderis and M. Taylor, Fermions in top down d-wave models.

  57. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keun-Young Kim.

Additional information

ArXiv ePrint: 1304.6729

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KY., Taylor, M. Holographic d-wave superconductors. J. High Energ. Phys. 2013, 112 (2013). https://doi.org/10.1007/JHEP08(2013)112

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)112

Keywords

Navigation