Skip to main content
Log in

Moduli-induced axion problem

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We point out that the cosmological moduli problem is not necessarily resolved even if the modulus mass is heavier than O(10) TeV, contrary to the common wisdom. The point is that, in many scenarios where the lightest moduli fields are stabilized by super symmetry breaking effects, those moduli fields tend to mainly decay into almost massless axions, whose abundance is tightly constrained by the recent Planck results. We study the moduli-induced axion problem in concrete examples, and discuss possible solutions. The problem and its solutions are widely applicable to decays of heavy scalar fields which dominate the energy density of the Universe, for instance, the reheating of the inflaton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological Problems for the Polonyi Potential, Phys. Lett. B 131 (1983) 59 [INSPIRE].

    ADS  Google Scholar 

  2. J.R. Ellis, D.V. Nanopoulos and M. Quirós, On the Axion, Dilaton, Polonyi, Gravitino and Shadow Matter Problems in Supergravity and Superstring Models, Phys. Lett. B 174 (1986) 176 [INSPIRE].

    ADS  Google Scholar 

  3. A. Goncharov, A.D. Linde and M. Vysotsky, Cosmological problems for spontaneously broken supergravity, Phys. Lett. B 147 (1984) 279 [INSPIRE].

    ADS  Google Scholar 

  4. B. de Carlos, J. Casas, F. Quevedo and E. Roulet, Model independent properties and cosmological implications of the dilaton and moduli sectors of 4 − D strings, Phys. Lett. B 318 (1993) 447 [hep-ph/9308325] [INSPIRE].

    ADS  Google Scholar 

  5. T. Banks, D.B. Kaplan and A.E. Nelson, Cosmological implications of dynamical supersymmetry breaking, Phys. Rev. D 49 (1994) 779 [hep-ph/9308292] [INSPIRE].

    ADS  Google Scholar 

  6. J. Polchinski, String theory Cambridge University Press, Cambridge, U.K. (1998).

    Book  Google Scholar 

  7. P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum Configurations for Superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. M. Graña, Flux compactifications in string theory: A Comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].

    Article  ADS  Google Scholar 

  11. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. T. Asaka and M. Kawasaki, Cosmological moduli problem and thermal inflation models, Phys. Rev. D 60 (1999) 123509 [hep-ph/9905467] [INSPIRE].

    ADS  Google Scholar 

  13. M. Dine, Y. Nir and Y. Shadmi, Enhanced symmetries and the ground state of string theory, Phys. Lett. B 438 (1998) 61 [hep-th/9806124] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. A.D. Linde, Relaxing the cosmological moduli problem, Phys. Rev. D 53 (1996) 4129 [hep-th/9601083] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. L. Randall and S.D. Thomas, Solving the cosmological moduli problem with weak scale inflation, Nucl. Phys. B 449 (1995) 229 [hep-ph/9407248] [INSPIRE].

    Article  ADS  Google Scholar 

  16. D.H. Lyth and E.D. Stewart, Thermal inflation and the moduli problem, Phys. Rev. D 53 (1996) 1784 [hep-ph/9510204] [INSPIRE].

    ADS  Google Scholar 

  17. M. Kawasaki and F. Takahashi, Late-time entropy production due to the decay of domain walls, Phys. Lett. B 618 (2005) 1 [hep-ph/0410158] [INSPIRE].

    ADS  Google Scholar 

  18. K. Nakayama, F. Takahashi and T.T. Yanagida, On the Adiabatic Solution to the Polonyi/Moduli Problem, Phys. Rev. D 84 (2011) 123523 [arXiv:1109.2073] [INSPIRE].

    ADS  Google Scholar 

  19. M. Endo, K. Hamaguchi and F. Takahashi, Moduli-induced gravitino problem, Phys. Rev. Lett. 96 (2006) 211301 [hep-ph/0602061] [INSPIRE].

    Article  ADS  Google Scholar 

  20. S. Nakamura and M. Yamaguchi, Gravitino production from heavy moduli decay and cosmological moduli problem revived, Phys. Lett. B 638 (2006) 389 [hep-ph/0602081] [INSPIRE].

    ADS  Google Scholar 

  21. M. Dine, R. Kitano, A. Morisse and Y. Shirman, Moduli decays and gravitinos, Phys. Rev. D 73 (2006) 123518 [hep-ph/0604140] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. M. Endo, K. Hamaguchi and F. Takahashi, Moduli/Inflaton Mixing with Supersymmetry Breaking Field, Phys. Rev. D 74 (2006) 023531 [hep-ph/0605091] [INSPIRE].

    ADS  Google Scholar 

  23. K.S. Jeong, M. Shimosuka and M. Yamaguchi, Light Higgsino in Heavy Gravitino Scenario with Successful Electroweak Symmetry Breaking, JHEP 09 (2012) 050 [arXiv:1112.5293] [INSPIRE].

    Article  ADS  Google Scholar 

  24. P. Svrček and E. Witten, Axions In String Theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J.P. Conlon, The QCD axion and moduli stabilisation, JHEP 05 (2006) 078 [hep-th/0602233] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. K. Choi and K.S. Jeong, String theoretic QCD axion with stabilized saxion and the pattern of supersymmetry breaking, JHEP 01 (2007) 103 [hep-th/0611279] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String Axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].

    ADS  Google Scholar 

  28. B.S. Acharya, K. Bobkov and P. Kumar, An M-theory Solution to the Strong CP Problem and Constraints on the Axiverse, JHEP 11 (2010) 105 [arXiv:1004.5138] [INSPIRE].

    Article  ADS  Google Scholar 

  29. T. Higaki and T. Kobayashi, Note on moduli stabilization, supersymmetry breaking and axiverse, Phys. Rev. D 84 (2011) 045021 [arXiv:1106.1293] [INSPIRE].

    ADS  Google Scholar 

  30. M. Cicoli, M. Goodsell and A. Ringwald, The type IIB string axiverse and its low-energy phenomenology, JHEP 10 (2012) 146 [arXiv:1206.0819] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Cicoli, S. de Alwis and A. Westphal, Heterotic Moduli Stabilization, arXiv:1304.1809 [INSPIRE].

  32. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  33. T. Higaki, K. Kamada and F. Takahashi, Higgs, Moduli Problem, Baryogenesis and Large Volume Compactifications, JHEP 09 (2012) 043 [arXiv:1207.2771] [INSPIRE].

    Article  ADS  Google Scholar 

  34. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. R. Blumenhagen, J. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY Breaking in Local String/F-Theory Models, JHEP 09 (2009) 007 [arXiv:0906.3297] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. M. Cicoli, J.P. Conlon and F. Quevedo, Dark Radiation in LARGE Volume Models, Phys. Rev. D 87 (2013) 043520 [arXiv:1208.3562] [INSPIRE].

    ADS  Google Scholar 

  38. T. Higaki and F. Takahashi, Dark Radiation and Dark Matter in Large Volume Compactifications, JHEP 11 (2012) 125 [arXiv:1208.3563] [INSPIRE].

    Article  ADS  Google Scholar 

  39. E. Chun and A. Lukas, Axino mass in supergravity models, Phys. Lett. B 357 (1995) 43 [hep-ph/9503233] [INSPIRE].

    ADS  Google Scholar 

  40. K. Choi, E.J. Chun and J.E. Kim, Cosmological implications of radiatively generated axion scale, Phys. Lett. B 403 (1997) 209 [hep-ph/9608222] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. E.J. Chun, D. Comelli and D.H. Lyth, The Abundance of relativistic axions in a flaton model of Peccei-Quinn symmetry, Phys. Rev. D 62 (2000) 095013 [hep-ph/0008133] [INSPIRE].

    ADS  Google Scholar 

  42. K. Ichikawa, M. Kawasaki, K. Nakayama, M. Senami and F. Takahashi, Increasing effective number of neutrinos by decaying particles, JCAP 05 (2007) 008 [hep-ph/0703034] [INSPIRE].

    Article  ADS  Google Scholar 

  43. K.S. Jeong and F. Takahashi, Light Higgsino from Axion Dark Radiation, JHEP 08 (2012) 017 [arXiv:1201.4816] [INSPIRE].

    Article  ADS  Google Scholar 

  44. K. Choi, K.-Y. Choi and C.S. Shin, Dark radiation and small-scale structure problems with decaying particles, Phys. Rev. D 86 (2012) 083529 [arXiv:1208.2496] [INSPIRE].

    ADS  Google Scholar 

  45. P. Graf and F.D. Steffen, Axions and saxions from the primordial supersymmetric plasma and extra radiation signatures, JCAP 02 (2013) 018 [arXiv:1208.2951] [INSPIRE].

    Article  ADS  Google Scholar 

  46. K.J. Bae, H. Baer and A. Lessa, Dark Radiation Constraints on Mixed Axion/Neutralino Dark Matter, JCAP 04 (2013) 041 [arXiv:1301.7428] [INSPIRE].

    Article  ADS  Google Scholar 

  47. K.S. Jeong and F. Takahashi, Axionic Co-genesis of Baryon, Dark Matter and Dark Radiation, JHEP 04 (2013) 121 [arXiv:1302.1486] [INSPIRE].

    Article  ADS  Google Scholar 

  48. T. Higaki and R. Kitano, On Supersymmetric Effective Theories of Axion, Phys. Rev. D 86 (2012) 075027 [arXiv:1104.0170] [INSPIRE].

    ADS  Google Scholar 

  49. M. Endo and F. Takahashi, Non-thermal Production of Dark Matter from Late-Decaying Scalar Field at Intermediate Scale, Phys. Rev. D 74 (2006) 063502 [hep-ph/0606075] [INSPIRE].

    ADS  Google Scholar 

  50. M. Kawasaki, K. Kohri and N. Sugiyama, Cosmological constraints on late time entropy production, Phys. Rev. Lett. 82 (1999) 4168 [astro-ph/9811437] [INSPIRE].

    Article  ADS  Google Scholar 

  51. M. Kawasaki, K. Kohri and N. Sugiyama, MeV scale reheating temperature and thermalization of neutrino background, Phys. Rev. D 62 (2000) 023506 [astro-ph/0002127] [INSPIRE].

    ADS  Google Scholar 

  52. J.P. Conlon and E. Palti, Gauge Threshold Corrections for Local Orientifolds, JHEP 09 (2009) 019 [arXiv:0906.1920] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. J.P. Conlon and E. Palti, On Gauge Threshold Corrections for Local IIB/F-theory GUTs, Phys. Rev. D 80 (2009) 106004 [arXiv:0907.1362] [INSPIRE].

    ADS  Google Scholar 

  54. J.P. Conlon, Gauge Threshold Corrections for Local String Models, JHEP 04 (2009) 059 [arXiv:0901.4350] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. J.P. Conlon and F.G. Pedro, Moduli Redefinitions and Moduli Stabilisation, JHEP 06 (2010) 082 [arXiv:1003.0388] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. K. Choi, H.P. Nilles, C.S. Shin and M. Trapletti, Sparticle Spectrum of Large Volume Compactification, JHEP 02 (2011) 047 [arXiv:1011.0999] [INSPIRE].

    Article  ADS  Google Scholar 

  57. E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343 [hep-th/9604030] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-Brane Instantons in Type II Orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].

    Article  ADS  Google Scholar 

  59. J.P. Conlon, A. Maharana and F. Quevedo, Towards Realistic String Vacua, JHEP 05 (2009) 109 [arXiv:0810.5660] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. A. Hebecker, A.K. Knochel and T. Weigand, A Shift Symmetry in the Higgs Sector: Experimental Hints and Stringy Realizations, JHEP 06 (2012) 093 [arXiv:1204.2551] [INSPIRE].

    Article  ADS  Google Scholar 

  61. L.J. Dixon, V. Kaplunovsky and J. Louis, Moduli dependence of string loop corrections to gauge coupling constants, Nucl. Phys. B 355 (1991) 649 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. V. Kaplunovsky and J. Louis, Field dependent gauge couplings in locally supersymmetric effective quantum field theories, Nucl. Phys. B 422 (1994) 57 [hep-th/9402005] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. V. Kaplunovsky and J. Louis, On Gauge couplings in string theory, Nucl. Phys. B 444 (1995) 191 [hep-th/9502077] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. J.P. Conlon, D. Cremades and F. Quevedo, Kähler potentials of chiral matter fields for Calabi-Yau string compactifications, JHEP 01 (2007) 022 [hep-th/0609180] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. K. Choi, A. Falkowski, H.P. Nilles, M. Olechowski and S. Pokorski, Stability of flux compactifications and the pattern of supersymmetry breaking, JHEP 11 (2004) 076 [hep-th/0411066] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. M. Endo, M. Yamaguchi and K. Yoshioka, A Bottom-up approach to moduli dynamics in heavy gravitino scenario: Superpotential, soft terms and sparticle mass spectrum, Phys. Rev. D 72 (2005) 015004 [hep-ph/0504036] [INSPIRE].

    ADS  Google Scholar 

  68. K. Choi, K.S. Jeong and K.-i. Okumura, Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models, JHEP 09 (2005) 039 [hep-ph/0504037] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. J. Casas, A. Lleyda and C. Muñoz, Strong constraints on the parameter space of the MSSM from charge and color breaking minima, Nucl. Phys. B 471 (1996) 3 [hep-ph/9507294] [INSPIRE].

    Article  ADS  Google Scholar 

  70. G. von Gersdorff and A. Hebecker, Kähler corrections for the volume modulus of flux compactifications, Phys. Lett. B 624 (2005) 270 [hep-th/0507131] [INSPIRE].

    ADS  Google Scholar 

  71. M. Berg, M. Haack and B. Körs, On volume stabilization by quantum corrections, Phys. Rev. Lett. 96 (2006) 021601 [hep-th/0508171] [INSPIRE].

    Article  ADS  Google Scholar 

  72. M. Berg, M. Haack and B. Körs, Loop corrections to volume moduli and inflation in string theory, Phys. Rev. D 71 (2005) 026005 [hep-th/0404087] [INSPIRE].

    ADS  Google Scholar 

  73. M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds, JHEP 11 (2005) 030 [hep-th/0508043] [INSPIRE].

    Article  ADS  Google Scholar 

  74. M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of String Loop Corrections in Type IIB Calabi-Yau Flux Compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  75. P. Fox, A. Pierce and S.D. Thomas, Probing a QCD string axion with precision cosmological measurements, hep-th/0409059 [INSPIRE].

  76. J.P. Conlon and M.C.D. Marsh, The Cosmophenomenology of Axionic Dark Radiation, arXiv:1304.1804 [INSPIRE].

  77. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton, U.S.A. (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Nakayama.

Additional information

ArXiv ePrint: 1304.7987

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higaki, T., Nakayama, K. & Takahashi, F. Moduli-induced axion problem. J. High Energ. Phys. 2013, 5 (2013). https://doi.org/10.1007/JHEP07(2013)005

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)005

Keywords

Navigation