Skip to main content
Log in

Dipole coupling effect of holographic fermion in the background of charged Gauss-Bonnet AdS black hole

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the holographic fermions in the charged Gauss-Bonnet AdS d black hole background with the dipole coupling between fermion and gauge field in the bulk. We show that in addition to the strength of the dipole coupling, the spacetime dimension and the higher curvature correction in the gravity background also influence the onset of the Fermi gap and the gap distance. We find that the higher curvature effect modifies the fermion spectral density and influences the value of the Fermi momentum for the appearance of the Fermi surface. There are richer physics in the boundary fermion system due to the modification in the bulk gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  4. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].

    Google Scholar 

  6. G.T. Horowitz, Introduction to holographic superconductors, arXiv:1002.1722 [INSPIRE].

  7. S.S. Gubser, Phase transitions near black hole horizons, Class. Quant. Grav. 22 (2005) 5121 [hep-th/0505189] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].

    ADS  Google Scholar 

  9. S.S. Lee, Non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [INSPIRE].

    ADS  Google Scholar 

  10. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].

    ADS  Google Scholar 

  11. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].

    ADS  Google Scholar 

  12. N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57 (2009) 367 [arXiv:0903.2596] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. M. Čubrovič, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].

    ADS  Google Scholar 

  15. D. Maity, S. Sarkar, N. Sircar, B. Sathiapalan and R. Shankar, Properties of CFTs dual to charged BTZ black-hole, Nucl. Phys. B 839 (2010) 526 [arXiv:0909.4051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. T. Albash and C.V. Johnson, Landau levels, magnetic fields and holographic Fermi liquids, J. Phys. A 43 (2010) 345404 [arXiv:1001.3700] [INSPIRE].

    MathSciNet  Google Scholar 

  17. P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Holographic non-Fermi liquid in a background magnetic field, Phys. Rev. D 82 (2010) 044036 [arXiv:0908.1436] [INSPIRE].

    ADS  Google Scholar 

  18. E. Gubankova et al., Holographic fermions in external magnetic fields, Phys. Rev. D 84 (2011) 106003 [arXiv:1011.4051] [INSPIRE].

    ADS  Google Scholar 

  19. I. Bah, A. Faraggi, J.I. Jottar, R.G. Leigh and L.A. Pando Zayas, Fermions and D = 11 supergravity on squashed Sasaki-Einstein manifolds, JHEP 02 (2011) 068 [arXiv:1008.1423] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. I. Bah, A. Faraggi, J.I. Jottar and R.G. Leigh, Fermions and type IIB supergravity on squashed Sasaki-Einstein manifolds, JHEP 01 (2011) 100 [arXiv:1009.1615] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. J.N. Laia and D. Tong, A holographic flat band, JHEP 11 (2011) 125 [arXiv:1108.1381] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. W.-J. Li and H.-b. Zhang, Holographic non-relativistic fermionic fixed point and bulk dipole coupling, JHEP 11 (2011) 018 [arXiv:1110.4559] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Alishahiha, M.R. Mohammadi Mozaffar and A. Mollabashi, Fermions on Lifshitz background, arXiv:1201.1764 [INSPIRE].

  24. L.Q. Fang, X.-H. Ge and X.-M. Kuang, Holographic fermions in charged Lifshitz theory, arXiv:1201.3832 [INSPIRE].

  25. M. Edalati, R.G. Leigh and P.W. Phillips, Dynamically generated mott gap from holography, Phys. Rev. Lett. 106 (2011) 091602 [arXiv:1010.3238] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Edalati, R.G. Leigh, K.W. Lo and P.W. Phillips, Dynamical gap and cuprate-like physics from holography, Phys. Rev. D 83 (2011) 046012 [arXiv:1012.3751] [INSPIRE].

    ADS  Google Scholar 

  27. J.-P. Wu and H.-B. Zeng, Dynamic gap from holographic fermions in charged dilaton black branes, JHEP 04 (2012) 068 [arXiv:1201.2485] [INSPIRE].

    Article  ADS  Google Scholar 

  28. W.-Y. Wen and S.-Y. Wu, Dipole coupling effect of holographic fermion in charged dilatonic gravity, Phys. Lett. B 712 (2012) 266 [arXiv:1202.6539] [INSPIRE].

    ADS  Google Scholar 

  29. W.-J. Li and J.-P. Wu, Holographic fermions in charged dilaton black branes, arXiv:1203.0674 [INSPIRE].

  30. R. Gregory, S. Kanno and J. Soda, Holographic superconductors with higher curvature corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. Q. Pan, B. Wang, E. Papantonopoulos, J. Oliveira and A. Pavan, Holographic superconductors with various condensates in Einstein-Gauss-Bonnet gravity, Phys. Rev. D 81 (2010) 106007 [arXiv:0912.2475] [INSPIRE].

    ADS  Google Scholar 

  32. Q. Pan and B. Wang, General holographic superconductor models with Gauss-Bonnet corrections, Phys. Lett. B 693 (2010) 159 [arXiv:1005.4743] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. R.-G. Cai, Z.-Y. Nie and H.-Q. Zhang, Holographic p-wave superconductors from Gauss-Bonnet gravity, Phys. Rev. D 82 (2010) 066007 [arXiv:1007.3321] [INSPIRE].

    ADS  Google Scholar 

  34. L. Barclay, R. Gregory, S. Kanno and P. Sutcliffe, Gauss-Bonnet holographic superconductors, JHEP 12 (2010) 029 [arXiv:1009.1991] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. X.-H. Ge, B. Wang, S.-F. Wu and G.-H. Yang, Analytical study on holographic superconductors in external magnetic field, JHEP 08 (2010) 108 [arXiv:1002.4901] [INSPIRE].

    Article  ADS  Google Scholar 

  36. Y. Brihaye and B. Hartmann, Holographic superconductors in 3 + 1 dimensions away from the probe limit, Phys. Rev. D 81 (2010) 126008 [arXiv:1003.5130] [INSPIRE].

    ADS  Google Scholar 

  37. J.P. Wu, Holographic fermions in charged Gauss-Bonnet black hole, JHEP 07 (2011) 106 [arXiv:1103.3982] [INSPIRE].

    Article  ADS  Google Scholar 

  38. R.M. Wald, General relativity, University of Chicago Press, Chicago, U.S.A. (1984).

  39. D.G. Boulware and S. Deser, String generated gravity models, Phys. Rev. Lett. 55 (1985) 2656 [INSPIRE].

    Article  ADS  Google Scholar 

  40. R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].

    ADS  Google Scholar 

  41. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].

    ADS  Google Scholar 

  42. X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Viscosity bound, causality violation and instability with stringy correction and charge, JHEP 10 (2008) 009 [arXiv:0808.2354] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].

    Article  ADS  Google Scholar 

  44. A. Buchel and R.C. Myers, Causality of holographic hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7 /CF T 6 , Gauss-Bonnet gravity and viscosity bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [INSPIRE].

    Article  Google Scholar 

  47. X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160] [INSPIRE].

    Article  ADS  Google Scholar 

  48. A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].

    Article  ADS  Google Scholar 

  49. X.-H. Ge and S.-J. Sin, Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant, JHEP 05 (2009) 051 [arXiv:0903.2527] [INSPIRE].

    Article  ADS  Google Scholar 

  50. T. Faulkner, G.T. Horowitz, J. McGreevy, M.M. Roberts and D. Vegh, Photoemissionexperimentson holographic superconductors, JHEP 03 (2010) 121 [arXiv:0911.3402] [INSPIRE].

    Article  ADS  Google Scholar 

  51. M. Henningson and K. Sfetsos, Spinors and the AdS/CFT correspondence, Phys. Lett. B 431 (1998) 63 [hep-th/9803251] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  52. W. Mueck and K. Viswanathan, Conformal field theory correlators from classical field theory on Anti-de Sitter space. 2. Vector and spinor fields, Phys. Rev. D 58 (1998) 106006 [hep-th/9805145] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Mei Kuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuang, XM., Wang, B. & Wu, JP. Dipole coupling effect of holographic fermion in the background of charged Gauss-Bonnet AdS black hole. J. High Energ. Phys. 2012, 125 (2012). https://doi.org/10.1007/JHEP07(2012)125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)125

Keywords

Navigation