Skip to main content
Log in

Coupling dependence of jet quenching in hot strongly-coupled gauge theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Previous top-down studies of jet stopping in strongly-coupled QCD-like plasmas with gravity duals have been in the infinite ’t Hooft coupling limit λ → ∞. They have found that, though a wide range of jet stopping distances are possible depending on initial conditions, the maximum jet stopping distance ℓmax scales with energy as E 1/3 at large energy. But it has always been unclear whether the large-coupling and high-energy limits commute. In this paper, we use the string α expansion in AdS-CFT to study the corrections to the λ = ∞ result in powers of 1/λ. For the particular type of “jets” that we study, we find that (i) the naive expansion in 1/λ breaks down for certain initial conditions but (ii) the relative corrections to the maximum stopping distance are small when 1/λ is small. More specifically, we find that the expansion in 1/λ is well behaved for jets whose stopping distance ℓstop is in the range λ −1/6max ≪ ℓstop ≲ ℓmax, but the expansion breaks down (and the fate of λ = ∞ results is uncertain) for jets created in such a way that ℓstopλ −1/6max. The analysis requires assessing the effects of all higher-derivative corrections to the supergravity action for the gravity dual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.S. Gubser, D.R. Gulotta, S.S. Pufu and F.D. Rocha, Gluon energy loss in the gauge-string duality, JHEP 10 (2008) 052 [arXiv:0803.1470] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. Y. Hatta, E. Iancu and A. Mueller, Jet evolution in the N = 4 SYM plasma at strong coupling, JHEP 05 (2008) 037 [arXiv:0803.2481] [INSPIRE].

    Article  ADS  Google Scholar 

  3. P.M. Chesler, K. Jensen, A. Karch and L.G. Yaffe, Light quark energy loss in strongly-coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. D 79 (2009) 125015 [arXiv:0810.1985] [INSPIRE].

    ADS  Google Scholar 

  4. P. Arnold and D. Vaman, Jet quenching in hot strongly coupled gauge theories revisited: 3-point correlators with gauge-gravity duality, JHEP 10 (2010) 099 [arXiv:1008.4023] [INSPIRE].

    Article  ADS  Google Scholar 

  5. P. Arnold and D. Vaman, Jet quenching in hot strongly coupled gauge theories simplified, JHEP 04 (2011) 027 [arXiv:1101.2689] [INSPIRE].

    Article  ADS  Google Scholar 

  6. P.M. Chesler, Y.-Y. Ho and K. Rajagopal, Shining a gluon beam through quark-gluon plasma, arXiv:1111.1691 [INSPIRE].

  7. S.-J. Sin and I. Zahed, Holography of radiation and jet quenching, Phys. Lett. B 608 (2005) 265 [hep-th/0407215] [INSPIRE].

    ADS  Google Scholar 

  8. M. Spillane, A. Stoffers and I. Zahed, Jet quenching in shock waves, JHEP 02 (2012) 023 [arXiv:1110.5069] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Stoffers and I. Zahed, Holographic jets in an expanding plasma, arXiv:1110.2943 [INSPIRE].

  10. C. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4 Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [INSPIRE].

    ADS  Google Scholar 

  12. P.B. Arnold, S. Cantrell and W. Xiao, Stopping distance for high energy jets in weakly-coupled quark-gluon plasmas, Phys. Rev. D 81 (2010) 045017 [arXiv:0912.3862] [INSPIRE].

    ADS  Google Scholar 

  13. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, The Landau-Pomeranchuk-Migdal effect in QED, Nucl. Phys. B 478 (1996) 577 [hep-ph/9604327] [INSPIRE].

    Article  ADS  Google Scholar 

  14. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483 (1997)291 [hep-ph/9607355] [INSPIRE].

    Article  ADS  Google Scholar 

  15. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and pT broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].

    Article  ADS  Google Scholar 

  16. B. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD, JETP Lett. 63 (1996) 952 [hep-ph/9607440] [INSPIRE].

    Article  ADS  Google Scholar 

  17. B. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].

    Article  ADS  Google Scholar 

  18. H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [INSPIRE].

    Article  ADS  Google Scholar 

  19. P. Arnold and D. Vaman, Some new results forjetstopping in AdS/CFT, arXiv:1106.1680, an abridged version appears in J. Phys. G 38 (2011) 124175 [INSPIRE].

    Google Scholar 

  20. N. Armesto, J.D. Edelstein and J. Mas, Jet quenching at finitet Hooft coupling and chemical potential from AdS/CFT, JHEP 09 (2006) 039 [hep-ph/0606245] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. P. Arnold and D. Vaman, 4-point correlators in finite-temperature AdS/CFT: jet quenching correlations, JHEP 11 (2011) 033 [arXiv:1109.0040] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. E. Shuryak, H.-U. Yee and I. Zahed, Self-force and synchrotron radiation in odd space-time dimensions, Phys. Rev. D 85 (2012) 104007 [arXiv:1111.3894] [INSPIRE].

    ADS  Google Scholar 

  23. P.M. Chesler, K. Jensen and A. Karch, Jets in strongly-coupled N = 4 super Yang-Mills theory, Phys. Rev. D 79 (2009) 025021 [arXiv:0804.3110] [INSPIRE].

    ADS  Google Scholar 

  24. S. Stieberger, Constraints on tree-level higher order gravitational couplings in superstring theory, Phys. Rev. Lett. 106 (2011) 111601 [arXiv:0910.0180] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. D.M. Richards, The one-loop five-graviton amplitude and the effective action, JHEP 10 (2008) 042 [arXiv:0807.2421] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. D.J. Gross and E. Witten, Superstring modifications of Einsteins equations, Nucl. Phys. B 277 (1986) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, hep-th/0201253 [INSPIRE].

  28. H. Kim, L. Romans and P. van Nieuwenhuizen, The mass spectrum of chiral N = 2 D = 10 supergravity on S 5, Phys. Rev. D 32 (1985) 389 [INSPIRE].

    ADS  Google Scholar 

  29. A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. M.T. Grisaru and D. Zanon, σ-model superstring corrections to the Einstein-Hilbert action, Phys. Lett. B 177 (1986) 347 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. M. Freeman, C. Pope, M. Sohnius and K. Stelle, Higher order σ-model counterterms and the effective action for superstrings, Phys. Lett. B 178 (1986) 199 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. Q.-H. Park and D. Zanon, More on σ-model β-functions and low-energy effective actions, Phys. Rev. D 35 (1987) 4038 [INSPIRE].

    ADS  Google Scholar 

  33. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. R. Kallosh and A. Rajaraman, Vacua of M-theory and string theory, Phys. Rev. D 58 (1998) 125003 [hep-th/9805041] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. M.B. Green and P. Vanhove, The low-energy expansion of the one loop type-II superstring amplitude, Phys. Rev. D 61 (2000) 104011 [hep-th/9910056] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. G. Festuccia and H. Liu, A Bohr-Sommerfeld quantization formula for quasinormal frequencies of AdS black holes, arXiv:0811.1033 [INSPIRE].

  37. K.B. Fadafan, R 2 curvature-squared corrections on drag force, JHEP 12 (2008) 051 [arXiv:0803.2777] [INSPIRE].

    Article  Google Scholar 

  38. K.B. Fadafan, Charge effect and finitet Hooft coupling correction on drag force and jet quenching Parameter, Eur. Phys. J. C 68 (2010) 505 [arXiv:0809.1336] [INSPIRE].

    Article  ADS  Google Scholar 

  39. J. Noronha, M. Gyulassy and G. Torrieri, Constraints on AdS/CFT gravity dual models of heavy ion collisions, Phys. Rev. C 82 (2010) 054903 [arXiv:0906.4099] [INSPIRE].

    ADS  Google Scholar 

  40. R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].

    ADS  Google Scholar 

  41. A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].

    Article  ADS  Google Scholar 

  42. M.F. Paulos, Higher derivative terms including the Ramond-Ramond five-form, JHEP 10 (2008) 047 [arXiv:0804.0763] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Arnold.

Additional information

ArXiv ePrint: 1203.6658

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, P., Szepietowski, P. & Vaman, D. Coupling dependence of jet quenching in hot strongly-coupled gauge theories. J. High Energ. Phys. 2012, 24 (2012). https://doi.org/10.1007/JHEP07(2012)024

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)024

Keywords

Navigation