Skip to main content
Log in

Low-energy observables and general gauge mediation in the MSSM and NMSSM

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study constraints on the general gauge mediation (GGM) parameter space arising from low-energy observables in the MSSM and NMSSM. Specifically, we look at the dependence of the spectra and observables on the correlation function ratios in the hidden sector where supersymmetry is presumably broken. Since these ratios are not a priori constrained by theory, current results from the muon anomalous magnetic moment and flavor physics can potentially provide valuable intuition about allowed possibilities. It is found that the muon anomalous magnetic moment and flavor-physics observables place significant constraints on the GGM parameter space with distinct dependences on the hidden sector correlation function ratios. The particle spectra arising in GGM, with the possibility of different correlation function ratios, is contrasted with common intuition from regular gauge mediation (RGM)schemes(where the ratios are always fixed). Comments are made on precision gauge coupling unification, topography of the NLSP space, correlations of the muon anomalous magnetic moment with other observables, and approximate scaling relations in sparticle masses with respect to the high-scale correlation function ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.P. Martin, A Supersymmetry Primer, hep-ph/9709356 [SPIRES].

  2. G.F. Giudice and R. Rattazzi, Theories with gauge-mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [SPIRES].

    Article  ADS  Google Scholar 

  3. P. Meade, N. Seiberg and D. Shih, General Gauge Mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  4. L.M. Carpenter, Surveying the Phenomenology of General Gauge Mediation, arXiv:0812.2051 [SPIRES].

  5. A. Rajaraman, Y. Shirman, J. Smidt and F. Yu, Parameter Space of General Gauge Mediation, Phys. Lett. B 678 (2009) 367 [arXiv:0903.0668] [SPIRES].

    ADS  Google Scholar 

  6. P. Meade, M. Reece and D. Shih, Prompt Decays of General Neutralino NLSPs at the Tevatron, JHEP 05 (2010) 105 [arXiv:0911.4130] [SPIRES].

    Article  ADS  Google Scholar 

  7. J.T. Ruderman and D. Shih, Slepton co-NLSPs at the Tevatron, JHEP 11 (2010) 046 [arXiv:1009.1665] [SPIRES].

    Article  ADS  Google Scholar 

  8. S. Abel, M.J. Dolan, J. Jaeckel and V.V. Khoze, Phenomenology of Pure General Gauge Mediation, JHEP 12 (2009) 001 [arXiv:0910.2674] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Abel, M.J. Dolan, J. Jaeckel and V.V. Khoze, Pure General Gauge Mediation for Early LHC Searches, JHEP 12 (2010) 049 [arXiv:1009.1164] [SPIRES].

    Article  ADS  Google Scholar 

  10. T. Kobayashi, Y. Nakai and R. Takahashi, Fine Tuning in General Gauge Mediation, JHEP 01 (2010) 003 [arXiv:0910.3477] [SPIRES].

    Article  ADS  Google Scholar 

  11. M. Buican, P. Meade, N. Seiberg and D. Shih, Exploring General Gauge Mediation, JHEP 03 (2009) 016 [arXiv:0812.3668] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. K. Intriligator and M. Sudano, General Gauge Mediation with Gauge Messengers, JHEP 06 (2010) 047 [arXiv:1001.5443] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. T.T. Dumitrescu, Z. Komargodski, N. Seiberg and D. Shih, General Messenger Gauge Mediation, JHEP 05 (2010) 096 [arXiv:1003.2661] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. M. McGarrie and R. Russo, General Gauge Mediation in 5D, Phys. Rev. D 82 (2010) 035001 [arXiv:1004.3305] [SPIRES].

    ADS  Google Scholar 

  15. M. McGarrie, General Gauge Mediation and Deconstruction, JHEP 11 (2010) 152 [arXiv:1009.0012] [SPIRES].

    Article  ADS  Google Scholar 

  16. M. McGarrie and D.C. Thompson, Warped General Gauge Mediation, Phys. Rev. D 82 (2010) 125034 [arXiv:1009.4696] [SPIRES].

    ADS  Google Scholar 

  17. M. Carena, P. Draper, N.R. Shah and C.E.M. Wagner, Determining the Structure of Supersymmetry-Breaking with Renormalization Group Invariants, Phys. Rev. D 82 (2010) 075005 [arXiv:1006.4363] [SPIRES].

    ADS  Google Scholar 

  18. M. Carena, P. Draper, N.R. Shah and C.E.M. Wagner, SUSY-Breaking Parameters from RG Invariants at the LHC, Phys. Rev. D 83 (2011) 035014 [arXiv:1011.4958] [SPIRES].

    ADS  Google Scholar 

  19. J. Jaeckel, V.V. Khoze and C. Wymant, Mass Sum Rules and the Role of the Messenger Scale in General Gauge Mediation, JHEP 04 (2011) 126 [arXiv:1102.1589] [SPIRES].

    Article  ADS  Google Scholar 

  20. J. Jaeckel, V.V. Khoze and C. Wymant, RG Invariants, Unification and the Role of the Messenger Scale in General Gauge Mediation, arXiv:1103.1843 [SPIRES].

  21. U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. J. Prades, Standard Model Prediction of the Muon Anomalous Magnetic Moment, Acta Phys. Polon. Supp. 3 (2010) 75 [arXiv:0909.2546] [SPIRES].

    Google Scholar 

  23. F. Jegerlehner and A. Nyffeler, The Muon g-2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [SPIRES].

    Article  ADS  Google Scholar 

  24. M. Passera, W.J. Marciano and A. Sirlin, The muon g-2 discrepancy: errors or new physics?, AIP Conf. Proc. 1078 (2009) 378 [arXiv:0809.4062] [SPIRES].

    ADS  Google Scholar 

  25. Muon G-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [SPIRES].

    ADS  Google Scholar 

  26. M. Davier, A. Hoecker, B. Malaescu, C.Z. Yuan and Z. Zhang, Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e + e  → π + π cross section data from BABAR, Eur. Phys. J. C 66 (2010) 1 [arXiv:0908.4300] [SPIRES].

    Article  ADS  Google Scholar 

  27. J. Prades, E. de Rafael and A. Vainshtein, Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment, arXiv:0901.0306 [SPIRES].

  28. S.P. Martin and J.D. Wells, Muon anomalous magnetic dipole moment in supersymmetric theories, Phys. Rev. D 64 (2001) 035003 [hep-ph/0103067] [SPIRES].

    ADS  Google Scholar 

  29. J.P. Leveille, The Second Order Weak Correction to (G-2) of the Muon in Arbitrary Gauge Models, Nucl. Phys. B 137 (1978) 63 [SPIRES].

    Article  ADS  Google Scholar 

  30. G. Isidori, B physics in the LHC era, arXiv:1001.3431 [SPIRES].

  31. BELLE collaboration, M. Nakao et al., Measurement of the B  → K γ branching fractions and asymmetries, Phys. Rev. D 69 (2004) 112001 [hep-ex/0402042] [SPIRES].

    ADS  Google Scholar 

  32. Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b − hadron and c − hadron Properties at the End of 2007, arXiv:0808.1297 [SPIRES].

  33. BABAR collaboration, B. Aubert et al., Observation of the semileptonic decays \( B \to {D^*}{\tau^{-} }{\bar{\nu }_\tau } \) and evidence for \( B \to D{\tau^{-} }{\bar{\nu }_\tau } \), Phys. Rev. Lett. 100 (2008) 021801 [arXiv:0709.1698] [SPIRES].

    Article  ADS  Google Scholar 

  34. CDF collaboration, T. Aaltonen et al., Search for B s 0 → μ + μ and B 0 → μ + μ decays with 2fb −1 of \( p\bar{p} \) collisions, Phys. Rev. Lett. 100 (2008) 101802 [arXiv:0712.1708] [SPIRES].

    Article  ADS  Google Scholar 

  35. A.G. Akeroyd and F. Mahmoudi, Constraints on charged Higgs bosons from D s ± → μ ± ν and D s ± → τ ± ν, JHEP 04 (2009) 121 [arXiv:0902.2393] [SPIRES].

    Article  ADS  Google Scholar 

  36. BABAR collaboration, B. Aubert et al., Measurement of Branching Fractions and CP and Isospin Asymmetries in B → K γ, arXiv:0808.1915 [SPIRES].

  37. FlaviaNet Working Group on Kaon Decays collaboration, M. Antonelli et al., Precision tests of the Standard Model with leptonic and semileptonic kaon decays, arXiv:0801.1817 [SPIRES].

  38. F. Mahmoudi, SuperIso v2.3: A Program for calculating flavor physics observables in Supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [SPIRES].

    Article  ADS  Google Scholar 

  39. K.G. Chetyrkin, M. Misiak and M. Münz, |∆F| = 1 nonleptonic effective Hamiltonian in a simpler scheme, Nucl. Phys. B 520 (1998) 279 [hep-ph/9711280] [SPIRES].

    Article  ADS  Google Scholar 

  40. B. Bhattacherjee, A. Dighe, D. Ghosh and S. Raychaudhuri, Do new data on B + → τ + ν τ decays point to an early discovery of supersymmetry at the LHC?, Phys. Rev. D 83 (2011) 094026 [arXiv:1012.1052] [SPIRES].

    ADS  Google Scholar 

  41. G. Isidori and P. Paradisi, Hints of large tanβ in flavour physics, Phys. Lett. B 639 (2006) 499 [hep-ph/0605012] [SPIRES].

    ADS  Google Scholar 

  42. W.-S. Hou, Enhanced charged Higgs boson effects in \( {B^{-} } \to \tau \bar{\nu } \) , \( \mu \bar{\nu } \) and \( b \to \tau \bar{\nu } + X \), Phys. Rev. D 48 (1993) 2342 [SPIRES].

    ADS  Google Scholar 

  43. A.G. Akeroyd and S. Recksiegel, The effect of H ± on B ± → τ ± ν/tau and B ± → μ ± νμ, J. Phys. G 29 (2003) 2311 [hep-ph/0306037] [SPIRES].

    ADS  Google Scholar 

  44. U. Nierste, S. Trine and S. Westhoff, Charged-Higgs effects in anew B → Dτν differential decay distribution, Phys. Rev. D 78 (2008) 015006 [arXiv:0801.4938] [SPIRES].

    ADS  Google Scholar 

  45. J.F. Kamenik and F. Mescia, B → Dτν Branching Ratios: Opportunity for Lattice QCD and Hadron Colliders, Phys. Rev. D 78 (2008) 014003 [arXiv:0802.3790] [SPIRES].

    ADS  Google Scholar 

  46. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  47. S.P. Martin and M.T. Vaughn, Regularization dependence of running couplings in softly broken supersymmetry, Phys. Lett. B 318 (1993) 331 [hep-ph/9308222] [SPIRES].

    ADS  Google Scholar 

  48. Y. Yamada, Two loop renormalization of gaugino masses in general supersymmetric gauge models, Phys. Rev. Lett. 72 (1994) 25 [hep-ph/9308304] [SPIRES].

    Article  ADS  Google Scholar 

  49. A. Djouadi et al., Benchmark scenarios for the NMSSM, JHEP 07 (2008) 002 [arXiv:0801.4321] [SPIRES].

    Article  ADS  Google Scholar 

  50. A. Djouadi, J. L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  51. F. Mahmoudi, SuperIso: A program for calculating the isospin asymmetry of B → K γ in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [arXiv:0710.2067] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  52. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs2.0: A program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  53. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: Version 1.3, Comput. Phys. Commun. 174 (2006) 577 [hep-ph/0405253] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  54. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: A program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103 [hep-ph/0112278] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  55. U. Ellwanger and C. Hugonie, NMSPEC: A Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions, Comput. Phys. Commun. 177 (2007) 399 [hep-ph/0612134] [SPIRES].

    Article  ADS  Google Scholar 

  56. U. Ellwanger and C. Hugonie, NMHDECAY 2.0: An Updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  57. A.B. Lahanas and K. Tamvakis, Low-energy thresholds and the renormalization group in the MSSM, Phys. Lett. B 348 (1995) 451 [hep-ph/9412281] [SPIRES].

    ADS  Google Scholar 

  58. Z. Chacko, M.A. Luty, A.E. Nelson and E. Ponton, Gaugino mediated supersymmetry breaking, JHEP 01 (2000) 003 [hep-ph/9911323] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun M. Thalapillil.

Additional information

ArXiv ePrint: 1012.4829

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thalapillil, A.M. Low-energy observables and general gauge mediation in the MSSM and NMSSM. J. High Energ. Phys. 2011, 59 (2011). https://doi.org/10.1007/JHEP06(2011)059

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)059

Keywords

Navigation