Skip to main content
Log in

Rényi entropies for free field theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Rényi entropies S q are useful measures of quantum entanglement; they can be calculated from traces of the reduced density matrix raised to power q, with q ≥ 0. For (d + 1)-dimensional conformal field theories, the Rényi entropies across S d−1 may be extracted from the thermal partition functions of these theories on either (d + 1)-dimensional de Sitter space or \( \mathbb{R} \times {\mathbb{H}^d} \), where \( {\mathbb{H}^d} \) is the d-dimensional hyperbolic space. These thermal partition functions can in turn be expressed as path integrals on branched coverings of the (d + 1)-dimensional sphere and S 1×\( {\mathbb{H}^d} \), respectively. We calculate the Rényi entropies of free massless scalars and fermions in d = 2, and show how using zeta-function regularization one finds agreement between the calculations on the branched coverings of S 3 and on S 1 × \( {\mathbb{H}^2} \). Analogous calculations for massive free fields provide monotonic interpolating functions between the Rényi entropies at the Gaussian and the trivial fixed points. Finally, we discuss similar Rényi entropy calculations in d > 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Rényi, On measures of information and entropy, in Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, University of California Press, Berkeley, CA (1961), p. 547.

    Google Scholar 

  2. A. Rényi, On the foundations of information theory, Rev. Int. Stat. Inst. 33 (1965) 1.

    Article  MATH  Google Scholar 

  3. M.B. Hastings, I. González, A.B. Kallin and R.G. Melko, Measuring Renyi Entanglement Entropy in Quantum Monte Carlo Simulations, Physical Review Letters 104 (2010) 157201 [arXiv:1001.2335].

    Article  ADS  Google Scholar 

  4. S.V. Isakov, M.B. Hastings and R.G. Melko, Topological entanglement entropy of a Bose-Hubbard spin liquid, Nature Physics 7 (2011) 772 [arXiv:1102.1721].

    Article  ADS  Google Scholar 

  5. J.-M. Stephan, G. Misguich and V. Pasquier, Renyi entanglement entropies in quantum dimer models : from criticality to topological order, J. Stat. Mech. 2012 (2012) P02003 [arXiv:1108.1699] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  6. J.I. Cirac, D. Poilblanc, N. Schuch and F. Verstraete, Entanglement spectrum and boundary theories with projected entangled-pair states, Phys. Rev. B 83 (2011) 245134 [arXiv:1103.3427].

    ADS  Google Scholar 

  7. Y. Zhang, T. Grover and A. Vishwanath, Topological Entanglement Entropy of \( \mathbb{Z} \) 2 Spin liquids and Lattice Laughlin states, Phys. Rev. B 84 (2011) 075128 [arXiv:1106.0015] [INSPIRE].

    ADS  Google Scholar 

  8. H. Yao and X.-L. Qi, Entanglement Entropy and Entanglement Spectrum of the Kitaev Model, Physical Review Letters 105 (2010), no. 8 080501 [arXiv:1001.1165].

  9. B. Swingle and T. Senthil, Entanglement Structure of Deconfined Quantum Critical Points, arXiv:1109.3185 [INSPIRE].

  10. B. Swingle, Rényi entropy, mutual information and fluctuation properties of Fermi liquids, arXiv:1007.4825.

  11. P. Calabrese, M. Mintchev and E. Vicari, Exact relations between particle fluctuations and entanglement in Fermi gases, arXiv:1111.4836.

  12. Y. Zhang, T. Grover and A. Vishwanath, Entanglement Entropy of Critical Spin Liquids, Physical Review Letters 107 (2011) 067202 [arXiv:1102.0350].

    Article  ADS  Google Scholar 

  13. A.B. Kallin, M.B. Hastings, R.G. Melko and R.R.P. Singh, Anomalies in the entanglement properties of the square-lattice Heisenberg model, Phys. Rev. B 84 (2011) 165134 [arXiv:1107.2840].

    ADS  Google Scholar 

  14. H.F. Song, N. Laflorencie, S. Rachel and K. Le Hur, Entanglement entropy of the two-dimensional Heisenberg antiferromagnet, Phys. Rev. B 83 (2011) 224410 [arXiv:1103.1636].

    ADS  Google Scholar 

  15. M.A. Metlitski, T. Grover and X.-L. Qi, Entanglement entropy in systems with spontaneously broken continuous symmetry, to appear.

  16. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [INSPIRE].

  17. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory: A Non-technical introduction, Int. J. Quant. Inf. 4 (2006) 429 [quant-ph/0505193] [INSPIRE].

    Article  MATH  Google Scholar 

  18. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A A 42 (2009)504005 [arXiv:0905.4013] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  19. H. Casini and M. Huerta, Entanglement entropy for the n-sphere, Phys. Lett. B 694 (2010) 167 [arXiv:1007.1813] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. D. Fursaev and G. Miele, Finite temperature scalar field theory in static de Sitter space, Phys. Rev. D 49 (1994) 987 [hep-th/9302078] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. L. De Nardo, D.V. Fursaev and G. Miele, Heat kernel coefficients and spectra of the vector Laplacians on spherical domains with conical singularities, Class. Quant. Grav. 14 (1997) 1059 [hep-th/9610011] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  22. R. Lohmayer, H. Neuberger, A. Schwimmer and S. Theisen, Numerical determination of entanglement entropy for a sphere, Phys. Lett. B 685 (2010) 222 [arXiv:0911.4283] [INSPIRE].

    ADS  Google Scholar 

  23. S.T. Flammia, A. Hamma, T.L. Hughes and X.-G. Wen, Topological Entanglement Rényi Entropy and Reduced Density Matrix Structure, Phys. Rev. Lett. 103 (2009) 261601 [arXiv:0909.3305].

    Article  ADS  Google Scholar 

  24. M. Levin and X.-G. Wen, Detecting Topological Order in a Ground State Wave Function, Phys. Rev. Lett. 96 (2006) 110405 [cond-mat/0510613].

    Article  ADS  Google Scholar 

  25. A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. B. Hsu, M. Mulligan, E. Fradkin and E.-A. Kim, Universal entanglement entropy in 2D conformal quantum critical points, Phys. Rev. B (2008) [arXiv:0812.0203] [INSPIRE].

  27. M.A. Metlitski, C.A. Fuertes and S. Sachdev, Entanglement entropy in the O(N) model, Phys. Rev. B 80 (2009) 115122 [arXiv:0904.4477].

    ADS  Google Scholar 

  28. H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009)504007 [arXiv:0905.2562] [INSPIRE].

    MathSciNet  Google Scholar 

  29. J. Eisert, M. Cramer and M. Plenio, Area laws for the entanglement entropy - a review, Rev. Mod. Phys. 82 (2010) 277 [arXiv:0808.3773] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

    MathSciNet  Google Scholar 

  31. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  34. D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, arXiv:1012.3210 [INSPIRE].

  35. G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. J. Dowker, Entanglement entropy for odd spheres, arXiv:1012.1548 [INSPIRE].

  37. I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-Theorem without Supersymmetry, JHEP 10 (2011)038 [arXiv:1105.4598] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. I.R. Klebanov, S.S. Pufu, S. Sachdev and B.R. Safdi, Entanglement Entropy of 3 − D Conformal Gauge Theories with Many Flavors, arXiv:1112.5342 [INSPIRE].

  39. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. T. Nishioka and T. Takayanagi, AdS Bubbles, Entropy and Closed String Tachyons, JHEP 01 (2007) 090 [hep-th/0611035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133 ] [hep-th/9711200] [INSPIRE].

  43. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  44. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  45. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, arXiv:1202.5650 [INSPIRE].

  48. M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

    ADS  Google Scholar 

  49. L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic Calculations of Renyi Entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].

    Article  ADS  Google Scholar 

  50. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. R. Camporesi, Harmonic analysis and propagators on homogeneous spaces, Phys. Rept. 196 (1990)1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. R. Camporesi, The Spinor heat kernel in maximally symmetric spaces, Commun. Math. Phys. 148 (1992) 283 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. A.A. Bytsenko, G. Cognola, L. Vanzo and S. Zerbini, Quantum fields and extended objects in space-times with constant curvature spatial section, Phys. Rept. 266 (1996) 1 [hep-th/9505061] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. S.L. Braunstein, S. Das and S. Shankaranarayanan, Entanglement entropy in all dimensions, arXiv:1110.1239 [INSPIRE].

  56. D.V. Fursaev, Entanglement Renyi Entropies in Conformal Field Theories and Holography, arXiv:1201.1702 [INSPIRE].

  57. J. Dowker, Entanglement entropy for even spheres, arXiv:1009.3854 [INSPIRE].

  58. S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  59. S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. J.L. Cardy, Is There a c Theorem in Four-Dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  61. Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, Journal of High Energy Physics 12 (2011) 99 [arXiv:1107.3987].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin R. Safdi.

Additional information

ArXiv ePrint: 1111.6290

On leave from Joseph Henry Laboratories and Center for Theoretical Science, Princeton University. (Igor R. Klebanov)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klebanov, I.R., Pufu, S.S., Sachdev, S. et al. Rényi entropies for free field theories. J. High Energ. Phys. 2012, 74 (2012). https://doi.org/10.1007/JHEP04(2012)074

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)074

Keywords

Navigation