Skip to main content
Log in

Thermodynamics, gravitational anomalies and cones

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

By studying the Euclidean partition function on a cone, we argue that pure and mixed gravitational anomalies generate a “Casimir momentum” which manifests itself as parity violating coefficients in the hydrodynamic stress tensor and charge current. The coefficients generated by these anomalies enter at a lower order in the hydrodynamic gradient expansion than would be naively expected. In 1 + 1 dimensions, the gravitational anomaly affects coefficients at zeroth order in the gradient expansion. The mixed anomaly in 3 + 1 dimensions controls the value of coefficients at first order in the gradient expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    Article  ADS  Google Scholar 

  4. S. Bhattacharyya, S. Lahiri, R. Loganayagam and S. Minwalla, Large rotating AdS black holes from fluid mechanics, JHEP 09 (2008) 054 [arXiv:0708.1770] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. N. Banerjee et al., Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. Torabian and H.-U. Yee, Holographic nonlinear hydrodynamics from AdS/CFT with multiple/non-Abelian symmetries, JHEP 08 (2009) 020 [arXiv:0903.4894] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. D.E. Kharzeev and H.J. Warringa, Chiral magnetic conductivity, Phys. Rev. D 80 (2009) 034028 [arXiv:0907.5007] [INSPIRE].

    ADS  Google Scholar 

  9. M. Lublinsky and I. Zahed, Anomalous chiral superfluidity, Phys. Lett. B 684 (2010) 119 [arXiv:0910.1373] [INSPIRE].

    Article  ADS  Google Scholar 

  10. Y. Neiman and Y. Oz, Relativistic hydrodynamics with general anomalous charges, JHEP 03 (2011) 023 [arXiv:1011.5107] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A theory of first order dissipative superfluid dynamics, arXiv:1105.3733 [INSPIRE].

  12. D.E. Kharzeev and H.-U. Yee, Anomalies and time reversal invariance in relativistic hydrodynamics: the second order and higher dimensional formulations, Phys. Rev. D 84 (2011) 045025 [arXiv:1105.6360] [INSPIRE].

    ADS  Google Scholar 

  13. R. Loganayagam, Anomaly induced transport in arbitrary dimensions, arXiv:1106.0277 [INSPIRE].

  14. Y. Neiman and Y. Oz, Anomalies in superfluids and a chiral electric effect, JHEP 09 (2011) 011 [arXiv:1106.3576] [INSPIRE].

    Article  ADS  Google Scholar 

  15. S. Dubovsky, L. Hui and A. Nicolis, Effective field theory for hydrodynamics: Wess-Zumino term and anomalies in two spacetime dimensions, arXiv:1107.0732 [INSPIRE].

  16. T. Kimura and T. Nishioka, The chiral heat effect, Prog. Theor. Phys. 127 (2012) 1009 [arXiv:1109.6331] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  17. S. Lin, An anomalous hydrodynamics for chiral superfluid, Phys. Rev. D 85 (2012) 045015 [arXiv:1112.3215] [INSPIRE].

    ADS  Google Scholar 

  18. V. Nair, R. Ray and S. Roy, Fluids, anomalies and the chiral magnetic effect: a group-theoretic formulation, Phys. Rev. D 86 (2012) 025012 [arXiv:1112.4022] [INSPIRE].

    ADS  Google Scholar 

  19. N. Banerjee et al., Constraints on fluid dynamics from equilibrium partition functions, JHEP 09 (2012) 046 [arXiv:1203.3544] [INSPIRE].

    Article  ADS  Google Scholar 

  20. K. Jensen, Triangle anomalies, thermodynamics and hydrodynamics, Phys. Rev. D 85 (2012) 125017 [arXiv:1203.3599] [INSPIRE].

    ADS  Google Scholar 

  21. S. Jain and T. Sharma, Anomalous charged fluids in 1 + 1d from equilibrium partition function, JHEP 01 (2013) 039 [arXiv:1203.5308] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. S. Bhattacharyya, S. Jain, S. Minwalla and T. Sharma, Constraints on superfluid hydrodynamics from equilibrium partition functions, JHEP 01 (2013) 040 [arXiv:1206.6106] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. N. Banerjee, S. Dutta, S. Jain, R. Loganayagam and T. Sharma, Constraints on anomalous fluid in arbitrary dimensions, arXiv:1206.6499 [INSPIRE].

  24. M. Valle, Hydrodynamics in 1 + 1 dimensions with gravitational anomalies, JHEP 08 (2012) 113 [arXiv:1206.1538] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. G. Volovik and A. Vilenkin, Macroscopic parity violating effects and He-3-A, Phys. Rev. D 62 (2000) 025014 [hep-ph/9905460] [INSPIRE].

    ADS  Google Scholar 

  26. A. Cappelli, M. Huerta and G.R. Zemba, Thermal transport in chiral conformal theories and hierarchical quantum Hall states, Nucl. Phys. B 636 (2002) 568 [cond-mat/0111437] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. S. Ryu, J.E. Moore and A.W. Ludwig, Electromagnetic and gravitational responses and anomalies in topological insulators and superconductors, Phys. Rev. B 85 (2012) 045104 [arXiv:1010.0936] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Stone, Gravitational anomalies and thermal Hall effect in topological insulators, Phys. Rev. B 85 (2012) 184503 [arXiv:1201.4095] [INSPIRE].

    Article  ADS  Google Scholar 

  29. K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational anomaly and transport, Phys. Rev. Lett. 107 (2011) 021601 [arXiv:1103.5006] [INSPIRE].

    Article  ADS  Google Scholar 

  30. R. Loganayagam and P. Surowka, Anomaly/transport in an ideal Weyl gas, JHEP 04 (2012) 097 [arXiv:1201.2812] [INSPIRE].

    Article  ADS  Google Scholar 

  31. P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP 01 (2006) 022 [hep-th/0508218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. P. Kraus, Lectures on black holes and the AdS 3/CFT 2 correspondence, Lect. Notes Phys. 755 (2008) 193 [hep-th/0609074] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. A. Vilenkin, Parity violating currents in thermal radiation, Phys. Lett. B 80 (1978) 150 [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Vilenkin, Macroscopic parity violating effects: neutrino fluxes from rotating black holes and in rotating thermal radiation, Phys. Rev. D 20 (1979) 1807 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. A. Vilenkin, Equilibrium parity violating current in a magnetic field, Phys. Rev. D 22 (1980) 3080 [INSPIRE].

    ADS  Google Scholar 

  36. A. Vilenkin, Quantum field theory at finite temperature in a rotating system, Phys. Rev. D 21 (1980) 2260 [INSPIRE].

    ADS  Google Scholar 

  37. A. Vilenkin, Cancellation of equilibrium parity violating currents, Phys. Rev. D 22 (1980) 3067 [INSPIRE].

    ADS  Google Scholar 

  38. A. Vilenkin, Parity nonconservation and neutrino transport in magnetic fields, Astrophys. J. 451 (1995) 700 [INSPIRE].

    Article  ADS  Google Scholar 

  39. K. Landsteiner, E. Megias, L. Melgar and F. Pena-Benitez, Holographic gravitational anomaly and chiral vortical effect, JHEP 09 (2011) 121 [arXiv:1107.0368] [INSPIRE].

    Article  ADS  Google Scholar 

  40. J.-H. Gao, Z.-T. Liang, S. Pu, Q. Wang and X.-N. Wang, Chiral anomaly and local polarization effect from quantum kinetic approach, Phys. Rev. Lett. 109 (2012) 232301 [arXiv:1203.0725] [INSPIRE].

    Article  ADS  Google Scholar 

  41. K. Jensen et al., Towards hydrodynamics without an entropy current, Phys. Rev. Lett. 109 (2012) 101601 [arXiv:1203.3556] [INSPIRE].

    Article  ADS  Google Scholar 

  42. H. Bloete, J.L. Cardy and M. Nightingale, Conformal invariance, the central charge and universal finite size amplitudes at criticality, Phys. Rev. Lett. 56 (1986) 742 [INSPIRE].

    Article  ADS  Google Scholar 

  43. I. Affleck, Universal term in the free energy at a critical point and the conformal anomaly, Phys. Rev. Lett. 56 (1986) 746 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. S. Golkar and D.T. Son, Non-renormalization of the chiral vortical effect coefficient, to appear.

  45. R.A. Bertlmann, Anomalies in quantum field theory, International Series of Monographs on Physics, 91, Oxford University Press, Oxford U.S.A. (1996) [INSPIRE].

  46. J.A. Harvey, TASI 2003 lectures on anomalies, hep-th/0509097 [INSPIRE].

  47. A. Bilal, Lectures on anomalies, arXiv:0802.0634 [INSPIRE].

  48. J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. W.A. Bardeen and B. Zumino, Consistent and covariant anomalies in gauge and gravitational theories, Nucl. Phys. B 244 (1984) 421 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. C.G. Callan Jr. and J.A. Harvey, Anomalies and fermion zero modes on strings and domain walls, Nucl. Phys. B 250 (1985) 427 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. S.G. Naculich, Axionic strings: covariant anomalies and bosonization of chiral zero modes, Nucl. Phys. B 296 (1988) 837 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. J.A. Harvey and O. Ruchayskiy, The local structure of anomaly inflow, JHEP 06 (2001) 044 [hep-th/0007037] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. K. Jensen, Chiral anomalies and AdS/CMT in two dimensions, JHEP 01 (2011) 109 [arXiv:1012.4831] [INSPIRE].

    Article  ADS  Google Scholar 

  54. R. Loganayagam, Entropy current in conformal hydrodynamics, JHEP 05 (2008) 087 [arXiv:0801.3701] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. D.V. Fursaev and S.N. Solodukhin, On the description of the Riemannian geometry in the presence of conical defects, Phys. Rev. D 52 (1995) 2133 [hep-th/9501127] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  56. D.V. Fursaev and G. Miele, Cones, spins and heat kernels, Nucl. Phys. B 484 (1997) 697 [hep-th/9605153] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. R. Loganayagam, work in progress.

  58. L. Álvarez-Gaumé, S. Della Pietra and G.W. Moore, Anomalies and odd dimensions, Annals Phys. 163 (1985) 288 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  59. S.N. Solodukhin, Entanglement entropy of black holes, Living Rev. Rel. 14 (2011) 8 [arXiv:1104.3712] [INSPIRE].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristan Jensen.

Additional information

ArXiv ePrint: 1207.5824

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, K., Loganayagam, R. & Yarom, A. Thermodynamics, gravitational anomalies and cones. J. High Energ. Phys. 2013, 88 (2013). https://doi.org/10.1007/JHEP02(2013)088

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2013)088

Keywords

Navigation