Skip to main content
Log in

Next-to-leading-order Monte Carlo simulation of diphoton production in hadronic collisions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present a method, based on the positive weight next-to-leading-order matching formalism (POWHEG), to simulate photon production processes at next-to-leading-order (NLO). This technique is applied to the simulation of diphoton production in hadron-hadron collisions. The algorithm consistently combines the parton shower and NLO calculation, producing only positive weight events. The simulation includes both the photon fragmentation contribution and a full implementation of the truncated shower required to correctly describe soft emissions in an angular-ordered parton shower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Buckley, J. Butterworth, S. Gieseke, D. Grellscheid, S. Hoche, et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].

    Article  ADS  Google Scholar 

  2. T. Sjöstrand and M. Bengtsson, The Lund Monte Carlo for jet fragmentation and e + e physics. JETSET version 6.3: an update, Comput. Phys. Commun. 43 (1987) 367 [INSPIRE].

    Article  ADS  Google Scholar 

  3. M. Bengtsson and T. Sjöstrand, Parton showers in leptoproduction events, Z. Phys. C 37 (1988) 465 [INSPIRE].

    ADS  Google Scholar 

  4. E. Norrbin and T. Sjöstrand, QCD radiation off heavy particles, Nucl. Phys. B 603 (2001) 297 [hep-ph/0010012] [INSPIRE].

    Article  ADS  Google Scholar 

  5. G. Miu and T. Sjöstrand, W production in an improved parton shower approach, Phys. Lett. B 449 (1999) 313 [hep-ph/9812455] [INSPIRE].

    ADS  Google Scholar 

  6. G. Corcella, I. Knowles, G. Marchesini, S. Moretti, K. Odagiri, et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].

    Article  ADS  Google Scholar 

  7. G. Corcella, I. Knowles, G. Marchesini, S. Moretti, K. Odagiri, et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].

  8. M.H. Seymour, Photon radiation in final state parton showering, Z. Phys. C 56 (1992) 161 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. M.H. Seymour, Matrix element corrections to parton shower simulation of deep inelastic scattering, talk contributed to the 27th International Conference on High Energy Physics (ICHEP), Glasgow Scotland, 20-27 July 1994.

  10. G. Corcella and M. Seymour, Matrix element corrections to parton shower simulations of heavy quark decay, Phys. Lett. B 442 (1998) 417 [hep-ph/9809451] [INSPIRE].

    ADS  Google Scholar 

  11. G. Corcella and M.H. Seymour, Initial state radiation in simulations of vector boson production at hadron colliders, Nucl. Phys. B 565 (2000) 227 [hep-ph/9908388] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M.H. Seymour, Matrix element corrections to parton shower algorithms, Comput. Phys. Commun. 90 (1995) 95 [hep-ph/9410414] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M.H. Seymour, A simple prescription for first order corrections to quark scattering and annihilation processes, Nucl. Phys. B 436 (1995) 443 [hep-ph/9410244] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Gieseke, A. Ribon, M.H. Seymour, P. Stephens and B. Webber, HERWIG++ 1.0: an event generator for e + e annihilation, JHEP 02 (2004) 005 [hep-ph/0311208] [INSPIRE].

    Article  ADS  Google Scholar 

  15. S. Gieseke, The new Monte Carlo event generator HERWIG++, hep-ph/0408034 [INSPIRE].

  16. K. Hamilton and P. Richardson, A simulation of QCD radiation in top quark decays, JHEP 02 (2007) 069 [hep-ph/0612236] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Gieseke, D. Grellscheid, K. Hamilton, A. Ribon, P. Richardson, et al., HERWIG++ 2.0 release note, hep-ph/0609306 [INSPIRE].

  18. M. Bahr, S. Gieseke, M. Gigg, D. Grellscheid, K. Hamilton, et al., HERWIG++ 2.2 release note, arXiv:0804.3053 [INSPIRE].

  19. S. Gieseke, D. Grellscheid, K. Hamilton, A. Papaefstathiou, S. Platzer, et al., HERWIG++ 2.5 release note, arXiv:1102.1672 [INSPIRE].

  20. S. Catani, F. Krauss, R. Kuhn and B. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].

    Article  ADS  Google Scholar 

  21. F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [INSPIRE].

    Article  ADS  Google Scholar 

  22. L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [INSPIRE].

    Article  Google Scholar 

  23. A. Schalicke and F. Krauss, Implementing the ME+PS merging algorithm, JHEP 07 (2005) 018 [hep-ph/0503281] [INSPIRE].

    Article  ADS  Google Scholar 

  24. F. Krauss, A. Schalicke and G. Soff, APACIC++ 2.0: a parton cascade in C++, Comput. Phys. Commun. 174 (2006) 876 [hep-ph/0503087] [INSPIRE].

    Article  ADS  Google Scholar 

  25. N. Lavesson and L. Lönnblad, W+jets matrix elements and the dipole cascade, JHEP 07 (2005) 054 [hep-ph/0503293] [INSPIRE].

    Article  ADS  Google Scholar 

  26. S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP 05 (2004) 040 [hep-ph/0312274] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Alwall, S. Hoche, F. Krauss, N. Lavesson, L. Lönnblad, et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].

    Article  ADS  Google Scholar 

  30. K. Hamilton, P. Richardson and J. Tully, A modified CKKW matrix element merging approach to angular-ordered parton showers, JHEP 11 (2009) 038 [arXiv:0905.3072] [INSPIRE].

    Article  ADS  Google Scholar 

  31. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

    Article  ADS  Google Scholar 

  32. S. Frixione, F. Stoeckli, P. Torrielli, B.R. Webber and C.D. White, The MCaNLO 4.0 event generator, arXiv:1010.0819 [INSPIRE].

  33. S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Single-top production in MC@NLO, JHEP 03 (2006) 092 [hep-ph/0512250] [INSPIRE].

    Article  ADS  Google Scholar 

  34. S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations, JHEP 04 (2007) 081 [hep-ph/0702198] [INSPIRE].

    Article  ADS  Google Scholar 

  35. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [INSPIRE].

    Article  ADS  Google Scholar 

  36. O. Latunde-Dada, HERWIG Monte Carlo at next-to-leading order for e + e annihilation and lepton pair production, JHEP 11 (2007) 040 [arXiv:0708.4390] [INSPIRE].

    Article  ADS  Google Scholar 

  37. O. Latunde-Dada, MC and NLO for the hadronic decay of Higgs bosons in associated production with vector bosons, JHEP 05 (2009) 112 [arXiv:0903.4135] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A. Papaefstathiou and O. Latunde-Dada, NLO production of W ’ bosons at hadron colliders using the MC@NLO and POWHEG methods, JHEP 07 (2009) 044 [arXiv:0901.3685] [INSPIRE].

    Article  ADS  Google Scholar 

  39. P. Torrielli and S. Frixione, Matching NLO QCD computations with PYTHIA using MC@NLO, JHEP 04 (2010) 110 [arXiv:1002.4293] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Frixione, F. Stoeckli, P. Torrielli and B.R. Webber, NLO QCD corrections in HERWIG++ with MC@NLO, JHEP 01 (2011) 053 [arXiv:1010.0568] [INSPIRE].

    Article  ADS  Google Scholar 

  41. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].

    Article  ADS  Google Scholar 

  43. P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [INSPIRE].

    Article  ADS  Google Scholar 

  45. O. Latunde-Dada, S. Gieseke and B. Webber, A positive-weight next-to-leading-order Monte Carlo for e + e annihilation to hadrons, JHEP 02 (2007) 051 [hep-ph/0612281] [INSPIRE].

    Article  ADS  Google Scholar 

  46. S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [INSPIRE].

    Article  ADS  Google Scholar 

  47. K. Hamilton, P. Richardson and J. Tully, A positive-weight next-to-leading order Monte Carlo simulation of Drell-Yan vector boson production, JHEP 10 (2008) 015 [arXiv:0806.0290] [INSPIRE].

    Article  ADS  Google Scholar 

  48. S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [INSPIRE].

    Article  ADS  Google Scholar 

  49. K. Hamilton, P. Richardson and J. Tully, A positive-weight next-to-leading order Monte Carlo simulation for Higgs boson production, JHEP 04 (2009) 116 [arXiv:0903.4345] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [Erratum ibid. 1002 (2010)011] [arXiv:0907.4076] [INSPIRE].

  51. S. Hoche, F. Krauss, M. Schonherr and F. Siegert, Automating the POWHEG method in SHERPA, JHEP 04 (2011) 024 [arXiv:1008.5399] [INSPIRE].

    Article  ADS  Google Scholar 

  52. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    Article  ADS  Google Scholar 

  53. P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, JHEP 02 (2010) 037 [arXiv:0911.5299] [INSPIRE].

    Article  ADS  Google Scholar 

  54. E. Re, Single-top production with the POWHEG method, PoS DIS2010 (2010) 172 [arXiv:1007.0498] [INSPIRE].

  55. E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE].

    ADS  Google Scholar 

  56. S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP 01 (2011) 095 [arXiv:1009.5594] [INSPIRE].

    Article  ADS  Google Scholar 

  57. S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP 04 (2011) 081 [arXiv:1012.3380] [INSPIRE].

    Article  ADS  Google Scholar 

  58. C. Oleari, The POWHEG-BOX, Nucl. Phys. Proc. Suppl. 205-206 (2010) 36 [arXiv:1007.3893] [INSPIRE].

    Article  Google Scholar 

  59. K. Hamilton, A positive-weight next-to-leading order simulation of weak boson pair production, JHEP 01 (2011) 009 [arXiv:1009.5391] [INSPIRE].

    Article  ADS  Google Scholar 

  60. C. Oleari and L. Reina, W +− \( b\overline b \) production in POWHEG, JHEP 08 (2011) 061 [Erratum ibid. 1111 (2011) 040] [arXiv:1105.4488] [INSPIRE].

  61. A. Kardos, C. Papadopoulos and Z. Trócsányi, Top quark pair production in association with a jet with NLO parton showering, Phys. Lett. B 705 (2011) 76 [arXiv:1101.2672] [INSPIRE].

    ADS  Google Scholar 

  62. T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W + W plus dijet production in the POWHEGBOX, Eur. Phys. J. C 71 (2011) 1670 [arXiv:1102.4846] [INSPIRE].

    Article  ADS  Google Scholar 

  63. N. Lavesson and L. Lönnblad, Extending CKKW-merging to one-loop matrix elements, JHEP 12 (2008) 070 [arXiv:0811.2912] [INSPIRE].

    Article  ADS  Google Scholar 

  64. K. Hamilton and P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements, JHEP 06 (2010) 039 [arXiv:1004.1764] [INSPIRE].

    Article  ADS  Google Scholar 

  65. S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO matrix elements and truncated showers, JHEP 08 (2011) 123 [arXiv:1009.1127] [INSPIRE].

    Article  ADS  Google Scholar 

  66. H. Baer, J. Ohnemus and J. Owens, A next-to-leading logarithm calculation of direct photon production, Phys. Rev. D 42 (1990) 61 [INSPIRE].

    ADS  Google Scholar 

  67. P. Aurenche, R. Baier and M. Fontannaz, Prompt photon production at colliders, Phys. Rev. D 42 (1990) 1440 [INSPIRE].

    ADS  Google Scholar 

  68. E. Glover and A. Morgan, Measuring the photon fragmentation function at LEP, Z. Phys. C 62 (1994) 311 [INSPIRE].

    ADS  Google Scholar 

  69. S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].

    ADS  Google Scholar 

  70. S. Hoeche, S. Schumann and F. Siegert, Hard photon production and matrix-elementparton-shower merging, Phys. Rev. D 81 (2010) 034026 [arXiv:0912.3501] [INSPIRE].

    ADS  Google Scholar 

  71. D0 collaboration, V. Abazov et al., Search for resonant diphoton production with the D0 detector, Phys. Rev. Lett. 102 (2009) 231801 [arXiv:0901.1887] [INSPIRE].

    Article  ADS  Google Scholar 

  72. The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment - Detector, trigger and physics, arXiv:0901.0512 [INSPIRE].

  73. CMS collaboration, G. Bayatian et al., CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995 [INSPIRE].

    ADS  Google Scholar 

  74. S. Mrenna and J.D. Wells, Detecting a light Higgs boson at the Fermilab Tevatron through enhanced decays to photon pairs, Phys. Rev. D 63 (2001) 015006 [hep-ph/0001226] [INSPIRE].

    ADS  Google Scholar 

  75. T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  76. G. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].

    Article  ADS  Google Scholar 

  77. WA70 collaboration, E. Bonvin et al., Intrinsic transverse momentum in the π p → γγX reaction at 280GeV/c, Phys. Lett. B 236 (1990) 523 [INSPIRE].

    ADS  Google Scholar 

  78. WA70 collaboration, E. Bonvin et al., Double prompt photon production at high transverse momentum by π on protons at 280GeV/c, Z. Phys. C 41 (1989) 591 [INSPIRE].

    Google Scholar 

  79. E706 collaboration, M. Begel, Photons and diphotons from E706, Nucl. Phys. Proc. Suppl. 79 (1999) 244 [INSPIRE].

    Article  ADS  Google Scholar 

  80. UA1 collaboration, C. Albajar et al., Direct photon production at the CERN proton - anti-Proton collider, Phys. Lett. B 209 (1988) 385 [INSPIRE].

    ADS  Google Scholar 

  81. UA2 collaboration, J. Alitti et al., A measurement of single and double prompt photon production at the CERN \( \overline p p \) collider, Phys. Lett. B 288 (1992) 386 [INSPIRE].

    ADS  Google Scholar 

  82. CDF collaboration, F. Abe et al., Measurement of the cross-section for production of two isolated prompt photons in \( \overline p p \) collisions at \( \sqrt {s} = 1.8 \) TeV, Phys. Rev. Lett. 70 (1993) 2232 [INSPIRE].

    Article  ADS  Google Scholar 

  83. CDF collaboration, D. Acosta et al., Measurement of the cross section for prompt diphoton production in \( p\overline p \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 95 (2005) 022003 [hep-ex/0412050] [INSPIRE].

    Article  ADS  Google Scholar 

  84. The D0 collaboration, V. Abazov et al., Measurement of direct photon pair production cross sections in \( p\overline p \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Lett. B 690 (2010) 108 [arXiv:1002.4917] [INSPIRE].

    ADS  Google Scholar 

  85. E.L. Berger, E. Braaten and R. Field, Large p T production of single and double photons in proton proton and pion-proton collisions, Nucl. Phys. B 239 (1984) 52 [INSPIRE].

    Article  ADS  Google Scholar 

  86. C. Llewellyn Smith, QCD predictions for processes involving real photons, Phys. Lett. B 79 (1978) 83 [INSPIRE].

    Google Scholar 

  87. P. Aurenche, R. Baier, M. Fontannaz and D. Schiff, Prompt photon production at large p T scheme invariant QCD predictions and comparison with experiment, Nucl. Phys. B 297 (1988) 661 [INSPIRE].

    Article  ADS  Google Scholar 

  88. L. Gordon and W. Vogelsang, Polarized and unpolarized isolated prompt photon production beyond the leading order, Phys. Rev. D 50 (1994) 1901 [INSPIRE].

    ADS  Google Scholar 

  89. P. Aurenche, A. Douiri, R. Baier, M. Fontannaz and D. Schiff, Large p T double photon production in hadronic collisions: beyond leading logarithm QCD calculation, Z. Phys. C 29 (1985) 459 [INSPIRE].

    ADS  Google Scholar 

  90. B. Bailey, J. Owens and J. Ohnemus, An order α s Monte Carlo calculation of hadronic double photon production, Phys. Rev. D 46 (1992) 2018 [INSPIRE].

    ADS  Google Scholar 

  91. V. Del Duca, F. Maltoni, Z. Nagy and Z. Trócsányi, QCD radiative corrections to prompt diphoton production in association with a jet at hadron colliders, JHEP 04 (2003) 059 [hep-ph/0303012] [INSPIRE].

    Article  ADS  Google Scholar 

  92. S. Catani, M. Fontannaz, J. Guillet and E. Pilon, Cross-section of isolated prompt photons in hadron hadron collisions, JHEP 05 (2002) 028 [hep-ph/0204023] [INSPIRE].

    Article  ADS  Google Scholar 

  93. T. Binoth, J. Guillet, E. Pilon and M. Werlen, A full next-to-leading order study of direct photon pair production in hadronic collisions, Eur. Phys. J. C 16 (2000) 311 [hep-ph/9911340] [INSPIRE].

    Article  ADS  Google Scholar 

  94. S. Catani and M. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503-504] [hep-ph/9605323] [INSPIRE].

  95. S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].

    Article  ADS  Google Scholar 

  96. M. Bahr, S. Gieseke, M. Gigg, D. Grellscheid, K. Hamilton, et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    Article  ADS  Google Scholar 

  97. L. Lönnblad, ThePEG, PYTHIA7, HERWIG++ and Ariadne, Nucl. Instrum. Meth. A 559 (2006) 246 [INSPIRE].

    ADS  Google Scholar 

  98. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  99. W.-K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, Acta Phys. Polon. B 33 (2002) 2933 [hep-ph/0206114] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  100. C. Balázs, E.L. Berger, S. Mrenna and C. Yuan, Photon pair production with soft gluon resummation in hadronic interactions, Phys. Rev. D 57 (1998) 6934 [hep-ph/9712471] [INSPIRE].

    ADS  Google Scholar 

  101. C. Balázs, E.L. Berger, P.M. Nadolsky and C.-P. Yuan, Calculation of prompt diphoton production cross-sections at Tevatron and LHC energies, Phys. Rev. D 76 (2007) 013009 [arXiv:0704.0001] [INSPIRE].

    ADS  Google Scholar 

  102. P.M. Nadolsky, C. Balázs, E.L. Berger and C.-P. Yuan, Gluon-gluon contributions to the production of continuum diphoton pairs at hadron colliders, Phys. Rev. D 76 (2007) 013008 [hep-ph/0702003] [INSPIRE].

    ADS  Google Scholar 

  103. P.M. Nadolsky and C. Schmidt, Diphoton production in gluon fusion at small transverse momentum, Phys. Lett. B 558 (2003) 63 [hep-ph/0211398] [INSPIRE].

    ADS  Google Scholar 

  104. C. Balázs, P.M. Nadolsky, C. Schmidt and C. Yuan, Diphoton background to Higgs boson production at the LHC with soft gluon effects, Phys. Lett. B 489 (2000) 157 [hep-ph/9905551] [INSPIRE].

    ADS  Google Scholar 

  105. A. Buckley, J. Butterworth, L. Lönnblad, H. Hoeth, J. Monk, et al., Rivet user manual, arXiv:1003.0694 [INSPIRE].

  106. C. Balázs, E.L. Berger, P.M. Nadolsky and C.-P. Yuan, All-orders resummation for diphoton production at hadron colliders, Phys. Lett. B 637 (2006) 235 [hep-ph/0603037] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca D’Errico.

Additional information

ArXiv ePrint: 1106.3939

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Errico, L., Richardson, P. Next-to-leading-order Monte Carlo simulation of diphoton production in hadronic collisions. J. High Energ. Phys. 2012, 130 (2012). https://doi.org/10.1007/JHEP02(2012)130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)130

Keywords

Navigation