Skip to main content
Log in

Families of exact solutions to Vasiliev’s 4D equations with spherical, cylindrical and biaxial symmetry

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We provide Vasiliev’s four-dimensional bosonic higher-spin gravities with six families of exact solutions admitting two commuting Killing vectors. Each family contains a subset of generalized Petrov Type-D solutions in which one of the two \( \mathfrak{s}\mathfrak{o} \) (2) symmetries enhances to either \( \mathfrak{s}\mathfrak{o} \) (3) or \( \mathfrak{s}\mathfrak{o} \) (2, 1). In particular, the spherically symmetric solutions are static and we expect one of them to be gauge-equivalent to the extremal Didenko-Vasiliev solution [1]. The solutions activate all spins and can be characterized either via generalized electric and magnetic charges defined asymptotically in weak-field regions or via the values of fully higher-spin gauge-invariant observables given by on-shell closed zero-forms. The solutions are obtained by combining the gauge-function method with separation of variables in twistor space via expansion of the Weyl zero-form in Di-Rac supersingleton projectors times deformation parameters in a fashion that is suggestive of a generalized electromagnetic duality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Didenko and M. Vasiliev, Static BPS black hole in 4d higher-spin gauge theory, Phys. Lett. B 682 (2009) 305 [arXiv:0906.3898] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  2. M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  3. M. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. M.A. Vasiliev, Higher spin gauge theories: Star product and AdS space, hep-th/9910096 [INSPIRE].

  5. X. Bekaert, S. Cnockaert, C. Iazeolla and M. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [INSPIRE].

  6. C. Iazeolla, On the Algebraic Structure of Higher-Spin Field Equations and New Exact Solutions, arXiv:0807.0406 [INSPIRE].

  7. M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. N. Boulanger and P. Sundell, An action principle for Vasilievs four-dimensional higher-spin gravity, J. Phys. A 44 (2011) 495402 [arXiv:1102.2219] [INSPIRE].

    Google Scholar 

  9. S. Gubser, I. Klebanov and A.M. Polyakov, A Semiclassical limit of the gauge/string correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Kruczenski, Spiky strings and single trace operators in gauge theories, JHEP 08 (2005) 014 [hep-th/0410226] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. F. Kristiansson and P. Rajan, Scalar field corrections to AdS 4 gravity from higher spin gauge theory, JHEP 04 (2003) 009 [hep-th/0303202] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. N. Boulanger, S. Leclercq and P. Sundell, On The Uniqueness of Minimal Coupling in Higher-Spin Gauge Theory, JHEP 08 (2008) 056 [arXiv:0805.2764] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, arXiv:1007.0435 [INSPIRE].

  14. M.A. Vasiliev, Equations of motion of interacting massless fields of all spins as a free differential algebra, Phys. Lett. B 209 (1988) 491 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. M.A. Vasiliev, Consistent equations for interacting massless fields of all spins in the first order in curvatures, Annals Phys. 190 (1989) 59 [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. M.A. Vasiliev, Properties of equations of motion of interacting gauge fields of all spins in (3 + 1)-dimensions, Class. Quant. Grav. 8 (1991) 1387 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. J. Engquist and P. Sundell, Brane partons and singleton strings, Nucl. Phys. B 752 (2006) 206 [hep-th/0508124] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Flato and C. Fronsdal, One Massless Particle Equals Two Dirac Singletons: Elementary Particles in a Curved Space. 6., Lett. Math. Phys. 2 (1978) 421 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. I. Klebanov and A. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  25. M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, Phys. Rev. D 83 (2011) 071701 [arXiv:1011.4926] [INSPIRE].

    ADS  Google Scholar 

  26. R. de Mello Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4 /CF T 3 Construction from Collective Fields, Phys. Rev. D 83 (2011) 025006 [arXiv:1008.0633] [INSPIRE].

    ADS  Google Scholar 

  27. S. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. V. Didenko, A. Matveev and M. Vasiliev, BTZ Black Hole as Solution of 3−D Higher Spin Gauge Theory, Theor. Math. Phys. 153 (2007) 1487 [hep-th/0612161] [INSPIRE].

    Article  MATH  Google Scholar 

  29. M. Gutperle and P. Kraus, Higher Spin Black Holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime Geometry in Higher Spin Gravity, JHEP 10 (2011) 053 [arXiv:1106.4788] [INSPIRE].

    Article  ADS  Google Scholar 

  31. E. Sezgin and P. Sundell, An Exact solution of 4−D higher-spin gauge theory, Nucl. Phys. B 762 (2007) 1 [hep-th/0508158] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. C. Iazeolla, E. Sezgin and P. Sundell, Real forms of complex higher spin field equations and new exact solutions, Nucl. Phys. B 791 (2008) 231 [arXiv:0706.2983] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Mars, A Space-time characterization of the Kerr metric, Class. Quant. Grav. 16 (1999) 2507 [gr-qc/9904070] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. V. Didenko, A. Matveev and M. Vasiliev, Unfolded Description of AdS 4 Kerr Black Hole, Phys. Lett. B 665 (2008) 284 [arXiv:0801.2213] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  35. V. Didenko, A. Matveev and M. Vasiliev, Unfolded Dynamics and Parameter Flow of Generic AdS 4 Black Hole, arXiv:0901.2172 [INSPIRE].

  36. F.A. Berezin and M.A. Shubin, The Schrödinger Equation, Moscow University Press, Moscow U.S.S.R. (1983).

    MATH  Google Scholar 

  37. A. Petrov, The Classification of spaces defining gravitational fields, Gen. Rel. Grav. 32 (2000) 1661 [INSPIRE].

    Article  ADS  Google Scholar 

  38. R. Penrose and W. Rindler, Spinors And Space-Time. 1. Two Spinor Calculus And Relativistic Fields, Cambridge Monographs On Mathematical Physics, Cambridge University Press, Cambridge U.K. (1984).

    Google Scholar 

  39. R. Penrose and W. Rindler, Spinors And Space-Time. 2. Spinor And Twistor Methods In Space-Time Geometry, Cambridge Monographs On Mathematical Physics, Cambridge University Press, Cambridge U.K. (1986).

    Google Scholar 

  40. E. Sezgin and P. Sundell, Analysis of higher spin field equations in four-dimensions, JHEP 07 (2002) 055 [hep-th/0205132] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. M.A. Vasiliev, Algebraic aspects of the higher spin problem, Phys. Lett. B 257 (1991) 111 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  42. K. Bolotin and M.A. Vasiliev, Star product and massless free field dynamics in AdS 4, Phys. Lett. B 479 (2000) 421 [hep-th/0001031] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  43. C. Iazeolla and P. Sundell, A Fiber Approach to Harmonic Analysis of Unfolded Higher-Spin Field Equations, JHEP 10 (2008) 022 [arXiv:0806.1942] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. N. Colombo and P. Sundell, Twistor space observables and quasi-amplitudes in 4D higher spin gravity, JHEP 11 (2011) 042 [arXiv:1012.0813] [INSPIRE].

    Article  ADS  Google Scholar 

  45. E. Sezgin and P. Sundell, Geometry and Observables in Vasilievs Higher Spin Gravity, arXiv:1103.2360 [INSPIRE].

  46. R.M. Wald, General Relativity, Chicago University Press, Chicago U.S.A. (1984).

    MATH  Google Scholar 

  47. M. Melvin, Pure magnetic and electric geons, Phys. Lett. 8 (1964) 65 [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. O. Gelfond and M. Vasiliev, Sp(8) invariant higher spin theory, twistors and geometric BRST formulation of unfolded field equations, JHEP 12 (2009) 021 [arXiv:0901.2176] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Iazeolla.

Additional information

ArXiv ePrint: 1107.1217

F.R.S.-FNRS Researcher with an Ulysse Incentive Grant for Mobility in Scientific Research. (Per Sundell)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iazeolla, C., Sundell, P. Families of exact solutions to Vasiliev’s 4D equations with spherical, cylindrical and biaxial symmetry. J. High Energ. Phys. 2011, 84 (2011). https://doi.org/10.1007/JHEP12(2011)084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2011)084

Keywords

Navigation