Skip to main content
Log in

Bekenstein-Hawking entropy as topological entanglement entropy

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Black holes in 2+1 dimensions enjoy long range topological interactions similar to those of non-abelian anyon excitations in a topologically ordered medium. Using this observation, we compute the topological entanglement entropy of BTZ black holes via the established formula S top = log(\( S_0^a \)), with \( S_b^a \) the modular S-matrix of the Virasoro characters χ a (τ). We find a precise match with the Bekenstein-Hawking entropy. This result adds a new twist to the relationship between quantum entanglement and the interior geometry of black holes. We generalize our result to higher spin black holes, and again find a detailed match. We comment on a possible alternative interpretation of our result in terms of boundary entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].

  2. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE].

  9. J.M. Maldacena and L. Susskind, Cool horizons for entangled black holes, arXiv:1306.0533 [INSPIRE].

  10. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. S.L. Braunstein, S. Pirandola and K. Życzkowski, Better late than never: information retrieval from black holes, Phys. Rev. Lett. 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Achucarro and P.K. Townsend, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. O. Coussaert, M. Henneaux and P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  16. A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (2006) 110405 [INSPIRE].

    Article  ADS  Google Scholar 

  18. C. Nayak, S.H. Simon, A. Stern, M. Freedman and S. Das Sarma, Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys. 80 (2008) 1083 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. S. Dong, E. Fradkin, R.G. Leigh and S. Nowling, Topological entanglement entropy in Chern-Simons theories and quantum Hall fluids, JHEP 05 (2008) 016 [arXiv:0802.3231] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].

    ADS  Google Scholar 

  22. E. Verlinde and H. Verlinde, Passing through the firewall, arXiv:1306.0515 [INSPIRE].

  23. H.L. Verlinde, Conformal field theory, 2-d quantum gravity and quantization of Teichmüller space, Nucl. Phys. B 337 (1990) 652 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. S. Carlip, Conformal field theory, (2+1)-dimensional gravity and the BTZ black hole, Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Y.-j. Chen, Quantum Liouville theory and BTZ black hole entropy, Class. Quant. Grav. 21 (2004) 1153 [hep-th/0310234] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  26. A.B. Zamolodchikov and A.B. Zamolodchikov, Liouville field theory on a pseudosphere, hep-th/0101152 [INSPIRE].

  27. J. Teschner, Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153 [hep-th/0104158] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. J. Teschner, On the relation between quantum Liouville theory and the quantized Teichmüller spaces, Int. J. Mod. Phys. A 19S2 (2004) 459 [hep-th/0303149] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  29. J. Teschner, Nonrational conformal field theory, arXiv:0803.0919 [INSPIRE].

  30. J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. N. Seiberg, Notes on quantum Liouville theory and quantum gravity, Prog. Theor. Phys. Suppl. 102 (1990) 319 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. E.P. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B 300 (1988) 360 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. J.L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys. B 324 (1989) 581 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. R. Dijkgraaf and E.P. Verlinde, Modular invariance and the fusion algebra, Nucl. Phys. Proc. Suppl. 5B (1988) 87 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. M.R. Gaberdiel and R. Gopakumar, Minimal model holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Black holes in three dimensional higher spin gravity: a review, J. Phys. A 46 (2013) 214001 [arXiv:1208.5182] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. J. de Boer and J.I. Jottar, Thermodynamics of higher spin black holes in AdS 3, arXiv:1302.0816 [INSPIRE].

  38. J. de Boer and J.I. Jottar, Entanglement entropy and higher spin holography in AdS 3, arXiv:1306.4347 [INSPIRE].

  39. A. Perez, D. Tempo and R. Troncoso, Higher spin gravity in 3D: black holes, global charges and thermodynamics, Phys. Lett. B 726 (2013) 444 [arXiv:1207.2844] [INSPIRE].

    Article  ADS  Google Scholar 

  40. N. Drukker, D. Gaiotto and J. Gomis, The virtue of defects in 4D gauge theories and 2D CFTs, JHEP 06 (2011) 025 [arXiv:1003.1112] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. I. Affleck and A.W.W. Ludwig, Universal nonintegerground state degeneracyin critical quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren McGough.

Additional information

ArXiv ePrint: 1308.2342

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGough, L., Verlinde, H. Bekenstein-Hawking entropy as topological entanglement entropy. J. High Energ. Phys. 2013, 208 (2013). https://doi.org/10.1007/JHEP11(2013)208

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)208

Keywords

Navigation