Skip to main content
Log in

A new method for taming tensor sum-integrals

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We report on the computation of a class of massless bosonic three-loop vacuum sum-integrals which are key building blocks for an evaluation of the Debye screening mass in hot QCD. Generalizing known techniques and introducing the concept of tensor reduction by dimensionality shifts (known to the zero-temperature community since the work of Tarasov in 1996) to finite temperature, we are able to treat hitherto unaccessible cases, which will allow us to finalize the long-term project of NNLO Debye mass evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

    Article  ADS  Google Scholar 

  2. F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. M. Argeri and P. Mastrolia, Feynman Diagrams and Differential Equations, Int. J. Mod. Phys. A 22 (2007) 4375 [arXiv:0707.4037] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. E. Remiddi and J. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. J.A.M. Vermaseren, Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys. A 14 (1999) 2037 [hep-ph/9806280] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and multiscale multiloop integrals, J. Math. Phys. 43 (2002) 3363 [hep-ph/0110083] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. G. Heinrich, Sector Decomposition, Int. J. Mod. Phys. A 23 (2008) 1457 [arXiv:0803.4177] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. P.B. Arnold and C.-X. Zhai, The three loop free energy for pure gauge QCD, Phys. Rev. D 50 (1994) 7603 [hep-ph/9408276] [INSPIRE].

    ADS  Google Scholar 

  10. E. Braaten and A. Nieto, Free energy of QCD at high temperature, Phys. Rev. D 53 (1996) 3421 [hep-ph/9510408] [INSPIRE].

    ADS  Google Scholar 

  11. K. Kajantie, M. Laine, K. Rummukainen and Y. Schröder, How to resum long distance contributions to the QCD pressure?, Phys. Rev. Lett. 86 (2001) 10 [hep-ph/0007109] [INSPIRE].

    Article  ADS  Google Scholar 

  12. K. Kajantie, M. Laine, K. Rummukainen and Y. Schröder, The pressure of hot QCD up to g 6 ln(1/g), Phys. Rev. D 67 (2003) 105008 [hep-ph/0211321] [INSPIRE].

    ADS  Google Scholar 

  13. F. Di Renzo, M. Laine, V. Miccio, Y. Schröder and C. Torrero, The leading non-perturbative coefficient in the weak-coupling expansion of hot QCD pressure, JHEP 07 (2006) 026 [hep-ph/0605042] [INSPIRE].

    Article  Google Scholar 

  14. M. Laine and Y. Schröder, Quark mass thresholds in QCD thermodynamics, Phys. Rev. D 73 (2006) 085009 [hep-ph/0603048] [INSPIRE].

    ADS  Google Scholar 

  15. Y. Schröder, Loops for Hot QCD, Nucl. Phys. Proc. Suppl. 183B (2008) 296 [arXiv:0807.0500] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. Möller and Y. Schröder, Open problems in hot QCD, Nucl. Phys. Proc. Suppl. 205-206 (2010) 218 [arXiv:1007.1223] [INSPIRE].

    Article  Google Scholar 

  17. J. Möller and Y. Schröder, Three-loop matching coefficients for hot QCD: Reduction and gauge independence, JHEP 08 (2012) 025 [arXiv:1207.1309] [INSPIRE].

    Article  Google Scholar 

  18. J. Möller and Y. Schröder, Dimensionally reduced QCD at high temperature, Prog. Part. Nucl. Phys. 67 (2012) 168 [INSPIRE].

    Article  Google Scholar 

  19. J. Möller, Algorithmic approach to finite-temperature QCD, Diploma Thesis, University of Bielefeld (2009).

  20. M. Nishimura and Y. Schröder, IBP methods at finite temperature, JHEP 09 (2012) 051 [arXiv:1207.4042] [INSPIRE].

    Article  ADS  Google Scholar 

  21. Y. Schröder, A fresh look on three-loop sum-integrals, JHEP 08 (2012) 095 [arXiv:1207.5666] [INSPIRE].

    Article  ADS  Google Scholar 

  22. I. Ghisoiu and Y. Schröder, A new three-loop sum-integral of mass dimension two, JHEP 09 (2012) 016 [arXiv:1207.6214] [INSPIRE].

    Article  ADS  Google Scholar 

  23. P.H. Ginsparg, First Order and Second Order Phase Transitions in Gauge Theories at Finite Temperature, Nucl. Phys. B 170 (1980) 388 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. T. Appelquist and R.D. Pisarski, High-Temperature Yang-Mills Theories and Three-Dimensional Quantum Chromodynamics, Phys. Rev. D 23 (1981) 2305 [INSPIRE].

    ADS  Google Scholar 

  25. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Generic rules for high temperature dimensional reduction and their application to the standard model, Nucl. Phys. B 458 (1996) 90 [hep-ph/9508379] [INSPIRE].

    Article  ADS  Google Scholar 

  26. E. Braaten and A. Nieto, Effective field theory approach to high temperature thermodynamics, Phys. Rev. D 51 (1995) 6990 [hep-ph/9501375] [INSPIRE].

    ADS  Google Scholar 

  27. I. Ghisoiu, J. Möller and Y. Schröder, in preparation.

  28. Strong and Electroweak Matter, Swansea, U.K., 2012, http://pyweb.swan.ac.uk/sewm/sewmweb/posters/ghisoiu.pdf.

  29. A. Gynther, M. Laine, Y. Schröder, C. Torrero and A. Vuorinen, Four-loop pressure of massless O(N) scalar field theory, JHEP 04 (2007) 094 [hep-ph/0703307] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J.O. Andersen, L. Kyllingstad and L.E. Leganger, Pressure to order g 8 log g of massless ϕ 4 theory at weak coupling, JHEP 08 (2009) 066 [arXiv:0903.4596] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Gynther, A. Kurkela and A. Vuorinen, The \( N_f^3 \) g 6 term in the pressure of hot QCD, Phys. Rev. D 80 (2009) 096002 [arXiv:0909.3521] [INSPIRE].

    ADS  Google Scholar 

  32. O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. O.V. Tarasov, Generalized recurrence relations for two loop propagator integrals with arbitrary masses, Nucl. Phys. B 502 (1997) 455 [hep-ph/9703319] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J.O. Andersen and L. Kyllingstad, Four-loop Screened Perturbation Theory, Phys. Rev. D 78 (2008) 076008 [arXiv:0805.4478] [INSPIRE].

    ADS  Google Scholar 

  35. C. Bogner and S. Weinzierl, Feynman graph polynomials, Int. J. Mod. Phys. A 25 (2010) 2585 [arXiv:1002.3458] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. R.M. Pirsig, Zen and the Art of Motorcycle Maintenance, William Morrow & Co. (1974).

  37. Wolfram Research, Inc., Mathematica, Version 8.0, Champaign, IL U.S.A. (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to York Schröder.

Additional information

ArXiv ePrint: 1208.0284

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghisoiu, I., Schröder, Y. A new method for taming tensor sum-integrals. J. High Energ. Phys. 2012, 10 (2012). https://doi.org/10.1007/JHEP11(2012)010

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2012)010

Keywords

Navigation