Skip to main content
Log in

Exotic top partners and Little Higgs

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Little Higgs models often give rise to top partners beyond the minimal ones necessary for the cancellation of quadratic divergences. We review how this occurs and discuss the phenomenology of these exotic states. We emphasize the possible importance of new pseudo-Nambu-Goldstone bosons in top partner decays. Indeed, cascade decays of exotic top partners may be the best way to discover these new bosons. We illustrate these points with a new Little Higgs construction based on an SO(10)/SO(5)2 coset structure, which fills a gap in the model building literature. These observations motivate new search strategies for top partners at the LHC, including for final states with b-jets and a large multiplicity of electroweak bosons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

    Article  ADS  Google Scholar 

  2. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  3. N. Arkani-Hamed et al., The minimal moose for a Little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. N. Arkani-Hamed, A. Cohen, E. Katz and A. Nelson, The Littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [INSPIRE].

    Article  ADS  Google Scholar 

  6. M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys. 58 (2007) 247 [hep-ph/0512128] [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. Perelstein, M.E. Peskin and A. Pierce, Top quarks and electroweak symmetry breaking in Little Higgs models, Phys. Rev. D 69 (2004) 075002 [hep-ph/0310039] [INSPIRE].

    ADS  Google Scholar 

  8. T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the Little Higgs model, Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040] [INSPIRE].

    ADS  Google Scholar 

  9. P. Meade and M. Reece, Top partners at the LHC: spin and mass measurement, Phys. Rev. D 74 (2006) 015010 [hep-ph/0601124] [INSPIRE].

    ADS  Google Scholar 

  10. A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A first top partner hunters guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].

    Article  Google Scholar 

  11. M. Buchkremer, G. Cacciapaglia, A. Deandrea and L. Panizzi, Model independent framework for searches of top partners, Nucl. Phys. B 876 (2013) 376 [arXiv:1305.4172] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Berger, J. Hubisz and M. Perelstein, A fermionic top partner: naturalness and the LHC, JHEP 07 (2012) 016 [arXiv:1205.0013] [INSPIRE].

    Article  ADS  Google Scholar 

  13. ATLAS collaboration, Search for pair production of heavy top-like quarks decaying to a high-p T W boson and a b quark in the lepton plus jets final state at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 718 (2013) 1284 [arXiv:1210.5468] [INSPIRE].

    ADS  Google Scholar 

  14. CMS collaboration, Search for pair produced fourth-generation up-type quarks in pp collisions at \( \sqrt{s}=7 \) TeV with a lepton in the final state, Phys. Lett. B 718 (2012) 307 [arXiv:1209.0471] [INSPIRE].

    ADS  Google Scholar 

  15. CMS collaboration, Search for heavy, top-like quark pair production in the dilepton final state in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 716 (2012) 103 [arXiv:1203.5410] [INSPIRE].

    ADS  Google Scholar 

  16. D.E. Kaplan and M. Schmaltz, The Little Higgs from a simple group, JHEP 10 (2003) 039 [hep-ph/0302049] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. T. Gregoire and J.G. Wacker, Mooses, topology and Higgs, JHEP 08 (2002) 019 [hep-ph/0206023] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. E. Katz, J.-Y. Lee, A.E. Nelson and D.G. Walker, A composite Little Higgs model, JHEP 10 (2005) 088 [hep-ph/0312287] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. J. Thaler and I. Yavin, The Littlest Higgs in anti-de Sitter space, JHEP 08 (2005) 022 [hep-ph/0501036] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].

    Article  ADS  Google Scholar 

  21. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE].

    Article  ADS  Google Scholar 

  22. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].

    Article  ADS  Google Scholar 

  23. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. Thaler, Little technicolor, JHEP 07 (2005) 024 [hep-ph/0502175] [INSPIRE].

    Article  ADS  Google Scholar 

  25. B. Grinstein, R. Kelley and P. Uttayarat, Hidden fine tuning in the quark sector of Little Higgs models, PoS(ICHEP 2010)392 [arXiv:1102.4010] [INSPIRE].

  26. L. Vecchi, The natural composite Higgs, arXiv:1304.4579 [INSPIRE].

  27. M. Schmaltz, D. Stolarski and J. Thaler, The bestest Little Higgs, JHEP 09 (2010) 018 [arXiv:1006.1356] [INSPIRE].

    Article  ADS  Google Scholar 

  28. K. Rao and D. Whiteson, Triangulating an exotic T quark, Phys. Rev. D 86 (2012) 015008 [arXiv:1204.4504] [INSPIRE].

    ADS  Google Scholar 

  29. M. Schmaltz and J. Thaler, Collective quartics and dangerous singlets in Little Higgs, JHEP 03 (2009) 137 [arXiv:0812.2477] [INSPIRE].

    Article  ADS  Google Scholar 

  30. H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [INSPIRE].

    Article  ADS  Google Scholar 

  31. H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004) 061 [hep-ph/0405243] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. I. Low, T parity and the Littlest Higgs, JHEP 10 (2004) 067 [hep-ph/0409025] [INSPIRE].

    Article  ADS  Google Scholar 

  33. S. Chang and J.G. Wacker, Little Higgs and custodial SU(2), Phys. Rev. D 69 (2004) 035002 [hep-ph/0303001] [INSPIRE].

    ADS  Google Scholar 

  34. S. Chang, ALittlest Higgsmodel with custodial SU(2) symmetry, JHEP 12 (2003) 057 [hep-ph/0306034] [INSPIRE].

    Article  ADS  Google Scholar 

  35. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for Zb \( \overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

    Article  ADS  Google Scholar 

  36. R. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    Article  ADS  Google Scholar 

  37. R. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

    ADS  Google Scholar 

  38. I. Low, W. Skiba and D. Tucker-Smith, Little Higgses from an antisymmetric condensate, Phys. Rev. D 66 (2002) 072001 [hep-ph/0207243] [INSPIRE].

    ADS  Google Scholar 

  39. T. Gregoire, D. Tucker-Smith and J.G. Wacker, What precision electroweak physics says about the SU(6)/Sp(6) Little Higgs, Phys. Rev. D 69 (2004) 115008 [hep-ph/0305275] [INSPIRE].

    ADS  Google Scholar 

  40. J.L. Hewett, F.J. Petriello and T.G. Rizzo, Constraining the Littlest Higgs, JHEP 10 (2003) 062 [hep-ph/0211218] [INSPIRE].

    Article  ADS  Google Scholar 

  41. C. Csáki, J. Hubisz, G.D. Kribs, P. Meade and J. Terning, Big corrections from a Little Higgs, Phys. Rev. D 67 (2003) 115002 [hep-ph/0211124] [INSPIRE].

    ADS  Google Scholar 

  42. C. Csáki, J. Hubisz, G.D. Kribs, P. Meade and J. Terning, Variations of Little Higgs models and their electroweak constraints, Phys. Rev. D 68 (2003) 035009 [hep-ph/0303236] [INSPIRE].

    ADS  Google Scholar 

  43. W. Kilian and J. Reuter, The low-energy structure of Little Higgs models, Phys. Rev. D 70 (2004) 015004 [hep-ph/0311095] [INSPIRE].

    ADS  Google Scholar 

  44. ATLAS collaboration, Search for exotic same-sign dilepton signatures (bquark, T 5/3 and 4 top quarks production) in 4.7 fb−1 of pp collisions at sqrts = 7 TeV with the ATLAS detector, ATL-PHYS-PROC-2013-016, CERN, Geneva Switzerland (2013).

  45. CMS collaboration, Search for a heavy partner of the top quark with charge 5/3, CMS-PAS-B2G-12-003, CERN, Geneva Switzerland (2012).

  46. S. Godfrey, T. Gregoire, P. Kalyniak, T.A. Martin and K. Moats, Exploring the heavy quark sector of the bestest Little Higgs model at the LHC, JHEP 04 (2012) 032 [arXiv:1201.1951] [INSPIRE].

    Article  ADS  Google Scholar 

  47. J. Kearney, A. Pierce and J. Thaler, Top partner probes of extended Higgs sectors, JHEP 08 (2013) 130 [arXiv:1304.4233] [INSPIRE].

    Article  ADS  Google Scholar 

  48. C. Cheung and J. Thaler, (Reverse) engineering vacuum alignment, JHEP 08 (2006) 016 [hep-ph/0604259] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Kearney.

Additional information

ArXiv ePrint: 1306.4314

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kearney, J., Pierce, A. & Thaler, J. Exotic top partners and Little Higgs. J. High Energ. Phys. 2013, 230 (2013). https://doi.org/10.1007/JHEP10(2013)230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)230

Keywords

Navigation