Skip to main content
Log in

On holographic entanglement entropy of charged matter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study holographic entanglement entropy in the background of charged dilatonic black holes which can be viewed as holographic duals of certain finite density states of \( \mathcal{N}=4 \) super Yang-Mills. These charged black holes are distinguished in that they have vanishing ground state entropy. The entanglement entropy for a slab experiences a second order phase transition as the thickness of the slab is varied, while the entanglement entropy for a sphere is a smooth function of the radius. This suggests that the second scale introduced by the anisotropy of the slab plays an important role in driving the phase transition. In both cases we do not observe any logarithmic violation of the area law indicative of hidden Fermi surfaces. We investigate how these results are affected by the inclusion of the Gauss-Bonnet term in the bulk gravitational action. We also observe that such addition to the bulk action does not change the logarithmic violation of the area law in the backgrounds with hyperscaling violation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sachdev, The quantum phases of matter, arXiv:1203.4565 [INSPIRE].

  2. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].

    ADS  Google Scholar 

  3. M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].

    ADS  Google Scholar 

  5. S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. S.S. Gubser and J. Ren, Analytic fermionic Greens functions from holography, Phys. Rev. D 86 (2012) 046004 [arXiv:1204.6315] [INSPIRE].

    ADS  Google Scholar 

  7. O. DeWolfe, S.S. Gubser and C. Rosen, Fermi surfaces in N = 4 super-Yang-Mills theory, arXiv:1207.3352 [INSPIRE].

  8. L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].

    ADS  Google Scholar 

  9. M.M. Wolf, Violation of the entropic area law for Fermions, Phys. Rev. Lett. 96 (2006) 010404 [quant-ph/0503219] [INSPIRE].

    Article  ADS  Google Scholar 

  10. D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the Widom conjecture, Phys. Rev. Lett. 96 (2006) 100503 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. B. Swingle, Entanglement entropy and the Fermi surface, arXiv:0908.1724 [INSPIRE].

  12. Y. Zhang, T. Grover and A. Vishwanath, Topological entanglement entropy of Z2 spin liquids and lattice Laughlin states, Phys. Rev. B 84 (2011) 075128 [arXiv:1106.0015] [INSPIRE].

    ADS  Google Scholar 

  13. W. Ding, A. Seidel and K. Yang, Entanglement entropy of Fermi liquids via multidimensional bosonization, Physical Review X 2 (2012), no. 1 011012 [arXiv:1110.3004].

  14. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi surfaces and entanglement entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. E. Shaghoulian, Holographic entanglement entropy and Fermi surfaces, JHEP 05 (2012) 065 [arXiv:1112.2702] [INSPIRE].

    Article  ADS  Google Scholar 

  18. X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].

    Article  ADS  Google Scholar 

  19. K. Narayan, On Lifshitz scaling and hyperscaling violation in string theory, Phys. Rev. D 85 (2012) 106006 [arXiv:1202.5935] [INSPIRE].

    ADS  Google Scholar 

  20. B.S. Kim, Schrödinger holography with and without hyperscaling violation, JHEP 06 (2012) 116 [arXiv:1202.6062] [INSPIRE].

    Article  ADS  Google Scholar 

  21. K. Hashimoto and N. Iizuka, A comment on holographic Luttinger theorem, JHEP 07 (2012) 064 [arXiv:1203.5388] [INSPIRE].

    Article  ADS  Google Scholar 

  22. E. Perlmutter, Hyperscaling violation from supergravity, JHEP 06 (2012) 165 [arXiv:1205.0242] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Cadoni and S. Mignemi, Phase transition and hyperscaling violation for scalar black branes, JHEP 06 (2012) 056 [arXiv:1205.0412] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Ammon, M. Kaminski and A. Karch, Hyperscaling-violation on probe D-branes, arXiv:1207.1726 [INSPIRE].

  25. J. Bhattacharya, S. Cremonini and A. Sinkovics, On the IR completion of geometries with hyperscaling violation, arXiv:1208.1752 [INSPIRE].

  26. N. Kundu, P. Narayan, N. Sircar and S.P. Trivedi, Entangled dilaton dyons, arXiv:1208.2008 [INSPIRE].

  27. S.A. Hartnoll and E. Shaghoulian, Spectral weight in holographic scaling geometries, JHEP 07 (2012) 078 [arXiv:1203.4236] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. D.J. Gross and H. Ooguri, Aspects of large-N gauge theory dynamics as seen by string theory, Phys. Rev. D 58 (1998) 106002 [hep-th/9805129] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. K. Zarembo, Wilson loop correlator in the AdS/CFT correspondence, Phys. Lett. B 459 (1999) 527 [hep-th/9904149] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. P. Olesen and K. Zarembo, Phase transition in Wilson loop correlator from AdS/CFT correspondence, hep-th/0009210 [INSPIRE].

  31. H. Kim, D. Park, S. Tamarian and H. Muller-Kirsten, Gross-Ooguri phase transition at zero and finite temperature: two circular Wilson loop case, JHEP 03 (2001) 003 [hep-th/0101235] [INSPIRE].

    Article  ADS  Google Scholar 

  32. T. Hirata and T. Takayanagi, AdS/CFT and strong subadditivity of entanglement entropy, JHEP 02 (2007) 042 [hep-th/0608213] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. A. Pakman and A. Parnachev, Topological entanglement entropy and holography, JHEP 07 (2008) 097 [arXiv:0805.1891] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].

    Article  ADS  Google Scholar 

  36. L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Alishahiha, M.R.M. Mozaffar and A. Mollabashi, Holographic aspects of two-charged dilatonic black hole in AdS 5, JHEP 10 (2012) 003 [arXiv:1208.2535] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].

  39. K. Goldstein et al., Holography of dyonic dilaton black branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [INSPIRE].

    Article  ADS  Google Scholar 

  40. C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Cadoni and P. Pani, Holography of charged dilatonic black branes at finite temperature, JHEP 04 (2011) 049 [arXiv:1102.3820] [INSPIRE].

    Article  ADS  Google Scholar 

  42. B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].

    Article  ADS  Google Scholar 

  44. I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. H. Liu and M. Mezei, A refinement of entanglement entropy and the number of degrees of freedom, arXiv:1202.2070 [INSPIRE].

  46. R.C. Myers and A. Singh, Comments on holographic entanglement entropy and RG flows, JHEP 04 (2012) 122 [arXiv:1202.2068] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. N. Ogawa and T. Takayanagi, Higher derivative corrections to holographic entanglement entropy for AdS solitons, JHEP 10 (2011) 147 [arXiv:1107.4363] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].

    ADS  Google Scholar 

  49. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].

    Article  ADS  Google Scholar 

  50. A. Buchel and R.C. Myers, Causality of holographic hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. T. Nishioka and T. Takayanagi, AdS bubbles, entropy and closed string tachyons, JHEP 01 (2007) 090 [hep-th/0611035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].

    MathSciNet  Google Scholar 

  54. I.R. Klebanov, T. Nishioka, S.S. Pufu and B.R. Safdi, On shape dependence and RG flow of entanglement entropy, JHEP 07 (2012) 001 [arXiv:1204.4160] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Kulaxizi.

Additional information

ArXiv ePrint: 1208.2937

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulaxizi, M., Parnachev, A. & Schalm, K. On holographic entanglement entropy of charged matter. J. High Energ. Phys. 2012, 98 (2012). https://doi.org/10.1007/JHEP10(2012)098

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)098

Keywords

Navigation