Skip to main content
Log in

Towards pp → VVjj at NLO QCD: bosonic contributions to triple vector boson production plus jet

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this work, some of the NLO QCD corrections for pp → VVjj + X are presented. A program in Mathematica based on the structure of Feyn Calc which automatically simplifies a set of amplitudes up to the hexagon level of rank 5 has been created for this purpose. We focus on two different topologies. The first involves all the virtual contributions needed for quadruple electroweak vector boson production, i.e. pp → VVVV + X. In the second, the remaining “bosonic” corrections to electroweak triple vector boson production with an additional jet (pp → VVVj + X) are computed. We show the factorization formula of the infrared divergences of the bosonic contributions for VVVV and VVVj production with V ∈ (W, Z, γ). Stability issues associated with the evaluation of the hexagons up to rank 5 are studied. The CPU time of the FORTRAN subroutines rounds the 2 milliseconds and seems to be competitive with other more sophisticated methods. Additionally, in appendix A the master equations to obtain the tensor coefficients up to the hexagon level in the external momenta convention are presented including the ones needed for small Gram determinants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Campbell, J. Huston and W. Stirling, Hard interactions of quarks and gluons: a primer for LHC physics, Rept. Prog. Phys. 70 (2007) 89 [hep-ph/0611148] [ INSPIRE].

    Article  ADS  Google Scholar 

  2. J. Ohnemus, An order α s calculation of hadronic W W + production, Phys. Rev. D 44 (1991) 1403 [ INSPIRE].

    ADS  Google Scholar 

  3. L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α s ) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [ INSPIRE].

    Article  ADS  Google Scholar 

  4. L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α s ) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [ INSPIRE].

    ADS  Google Scholar 

  5. J. Ohnemus, An order α s calculation of hadronic W ± Z production, Phys. Rev. D 44 (1991) 3477 [ INSPIRE].

    ADS  Google Scholar 

  6. J. Ohnemus, Hadronic ZZ, W W + and W ± Z production with QCD corrections and leptonic decays, Phys. Rev. D 50 (1994) 1931 [hep-ph/9403331] [ INSPIRE].

    ADS  Google Scholar 

  7. U. Baur, T. Han and J. Ohnemus, W Z production at hadron colliders: effects of nonstandard WWZ couplings and QCD corrections, Phys. Rev. D 51 (1995) 3381 [hep-ph/9410266] [ INSPIRE].

    ADS  Google Scholar 

  8. U. Baur, T. Han and J. Ohnemus, QCD corrections and nonstandard three vector boson couplings in W + W production at hadron colliders, Phys. Rev. D 53 (1996) 1098 [hep-ph/9507336] [ INSPIRE].

    ADS  Google Scholar 

  9. J.M. Campbell and R. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [ INSPIRE].

    ADS  Google Scholar 

  10. S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to WW + jet production at hadron colliders, Phys. Rev. Lett. 100 (2008) 062003 [arXiv:0710.1577] [ INSPIRE].

    Article  ADS  Google Scholar 

  11. J.M. Campbell, R. Ellis and G. Zanderighi, Next-to-leading order predictions for WW + 1 jet distributions at the LHC, JHEP 12 (2007) 056 [arXiv:0710.1832] [ INSPIRE].

    Article  ADS  Google Scholar 

  12. F. Campanario, C. Englert, M. Spannowsky and D. Zeppenfeld, NLO-QCD corrections to Wγj production, Europhys. Lett. 88 (2009) 11001 [arXiv:0908.1638] [ INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to \( {{{pp}} \left/ {{p\bar{p}}} \right.} \to WW + jet + X \) including leptonic W-boson decays, Nucl. Phys. B 826 (2010) 18 [arXiv:0908.4124] [ INSPIRE].

    Article  ADS  Google Scholar 

  14. T. Binoth, T. Gleisberg, S. Karg, N. Kauer and G. Sanguinetti, NLO QCD corrections to ZZ + jet production at hadron colliders, Phys. Lett. B 683 (2010) 154 [arXiv:0911.3181] [ INSPIRE].

    Article  ADS  Google Scholar 

  15. F. Campanario, C. Englert, S. Kallweit, M. Spannowsky and D. Zeppenfeld, NLO QCD corrections to WZ + jet production with leptonic decays, JHEP 07 (2010) 076 [arXiv:1006.0390] [ INSPIRE].

    Article  ADS  Google Scholar 

  16. F. Campanario, C. Englert and M. Spannowsky, Precise predictions for (non-standard) Wγ + jet production, Phys. Rev. D 83 (2011) 074009 [arXiv:1010.1291] [ INSPIRE].

    ADS  Google Scholar 

  17. C. Oleari and D. Zeppenfeld, QCD corrections to electroweak ν(l)jj and+ jj production, Phys. Rev. D 69 (2004) 093004 [hep-ph/0310156] [ INSPIRE].

    ADS  Google Scholar 

  18. B. Jager, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W + W production via vector-boson fusion, JHEP 07 (2006) 015 [hep-ph/0603177] [ INSPIRE].

    Article  ADS  Google Scholar 

  19. G. Bozzi, B. Jager, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W + Z and W Z production via vector-boson fusion, Phys. Rev. D 75 (2007) 073004 [hep-ph/0701105] [ INSPIRE].

    ADS  Google Scholar 

  20. T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, Next-to-leading order QCD predictions for W + W + jj production at the LHC, JHEP 12 (2010) 053 [arXiv:1007.5313] [ INSPIRE].

    Article  ADS  Google Scholar 

  21. T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, NLO QCD corrections for W + W pair production in association with two jets at hadron colliders, Phys. Rev. D 83 (2011) 114043 [arXiv:1104.2327] [ INSPIRE].

    ADS  Google Scholar 

  22. A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to WWbb production at hadron colliders, Phys. Rev. Lett. 106 (2011) 052001 [arXiv:1012.3975] [ INSPIRE].

    Article  ADS  Google Scholar 

  23. G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos and M. Worek, Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP 02 (2011) 083 [arXiv:1012.4230] [ INSPIRE].

    Article  ADS  Google Scholar 

  24. Z. Bern and D.A. Kosower, Efficient calculation of one loop QCD amplitudes, Phys. Rev. Lett. 66 (1991) 1669 [ INSPIRE].

    Article  ADS  Google Scholar 

  25. Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett. 70 (1993) 2677 [hep-ph/9302280] [ INSPIRE].

    Article  ADS  Google Scholar 

  26. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [ INSPIRE].

    Article  ADS  Google Scholar 

  28. Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to two quark three gluon amplitudes, Nucl. Phys. B 437 (1995) 259 [hep-ph/9409393] [ INSPIRE].

    Article  ADS  Google Scholar 

  29. Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e + e to four partons, Nucl. Phys. B 513 (1998) 3 [hep-ph/9708239] [ INSPIRE].

    Article  ADS  Google Scholar 

  30. R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. Z. Bern, L.J. Dixon and D.A. Kosower, On-shell recurrence relations for one-loop QCD amplitudes, Phys. Rev. D 71 (2005) 105013 [hep-th/0501240] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. D. Forde and D.A. Kosower, All-multiplicity one-loop corrections to MHV amplitudes in QCD, Phys. Rev. D 73 (2006) 061701 [hep-ph/0509358] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. C.F. Berger, Z. Bern, L.J. Dixon, D. Forde and D.A. Kosower, Bootstrapping one-loop QCD amplitudes with general helicities, Phys. Rev. D 74 (2006) 036009 [hep-ph/0604195] [ INSPIRE].

    ADS  Google Scholar 

  34. G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes, JHEP 03 (2007) 111 [hep-ph/0612277] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. G. Ossola, C.G. Papadopoulos and R. Pittau, Numerical evaluation of six-photon amplitudes, JHEP 07 (2007) 085 [arXiv:0704.1271] [ INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Badger, E. Glover and K. Risager, One-loop ϕ-MHV amplitudes using the unitarity bootstrap, JHEP 07 (2007) 066 [arXiv:0704.3914] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. R. Ellis, W. Giele and Z. Kunszt, A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [ INSPIRE].

    Article  ADS  Google Scholar 

  41. W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP 04 (2008) 049 [arXiv:0801.2237] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. P. Mastrolia, G. Ossola, C. Papadopoulos and R. Pittau, Optimizing the reduction of one-loop amplitudes, JHEP 06 (2008) 030 [arXiv:0803.3964] [ INSPIRE].

    Article  ADS  Google Scholar 

  43. C. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [ INSPIRE].

    ADS  Google Scholar 

  44. W. Giele and G. Zanderighi, On the numerical evaluation of one-loop amplitudes: the gluonic case, JHEP 06 (2008) 038 [arXiv:0805.2152] [ INSPIRE].

    Article  ADS  Google Scholar 

  45. R. Ellis, W. Giele, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop amplitudes for W + 3 jet production in hadron collisions, JHEP 01 (2009) 012 [arXiv:0810.2762] [ INSPIRE].

    Article  ADS  Google Scholar 

  46. E. Nigel Glover and C. Williams, One-loop gluonic amplitudes from single unitarity cuts, JHEP 12 (2008) 067 [arXiv:0810.2964] [ INSPIRE].

    Article  Google Scholar 

  47. R. Britto, Unitarity cuts for one-loop amplitudes, Nucl. Phys. Proc. Suppl. 183 (2008) 36 [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. A. Lazopoulos, Multi-gluon one-loop amplitudes numerically, arXiv:0812.2998 [ INSPIRE].

  49. Z. Nagy and D.E. Soper, Numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev. D 74 (2006) 093006 [hep-ph/0610028] [ INSPIRE].

    ADS  Google Scholar 

  50. R. Britto and B. Feng, Integral coefficients for one-loop amplitudes, JHEP 02 (2008) 095 [arXiv:0711.4284] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. M. Moretti, F. Piccinini and A. Polosa, A fully numerical approach to one-loop amplitudes, arXiv:0802.4171 [ INSPIRE].

  52. R. Britto, B. Feng and P. Mastrolia, Closed-form decomposition of one-loop massive amplitudes, Phys. Rev. D 78 (2008) 025031 [arXiv:0803.1989] [ INSPIRE].

    ADS  Google Scholar 

  53. R. Britto, B. Feng and G. Yang, Polynomial structures in one-loop amplitudes, JHEP 09 (2008) 089 [arXiv:0803.3147] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. A. van Hameren, C. Papadopoulos and R. Pittau, Automated one-loop calculations: a proof of concept, JHEP 09 (2009) 106 [arXiv:0903.4665] [ INSPIRE].

    Article  ADS  Google Scholar 

  55. G. Passarino and M. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [ INSPIRE].

    Article  ADS  Google Scholar 

  56. G. van Oldenborgh and J. Vermaseren, New algorithms for one loop integrals, Z. Phys. C 46 (1990) 425 [ INSPIRE].

    Google Scholar 

  57. Y. Ezawa et al., Brown-Feynman reduction of one loop Feynman diagrams to scalar integrals with orthonormal basis tensors, Comput. Phys. Commun. 69 (1992) 15 [ INSPIRE].

    Article  ADS  Google Scholar 

  58. A.I. Davydychev, A simple formula for reducing Feynman diagrams to scalar integrals, Phys. Lett. B 263 (1991) 107 [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated one loop integrals, Phys. Lett. B 302 (1993) 299 [Erratum ibid. B 318 (1993) 649] [hep-ph/9212308] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. O. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  62. J. Fleischer, F. Jegerlehner and O. Tarasov, Algebraic reduction of one loop Feynman graph amplitudes, Nucl. Phys. B 566 (2000) 423 [hep-ph/9907327] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. T. Binoth, J. Guillet and G. Heinrich, Reduction formalism for dimensionally regulated one loop N point integrals, Nucl. Phys. B 572 (2000) 361 [hep-ph/9911342] [ INSPIRE].

    Article  ADS  Google Scholar 

  64. A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. G. Duplancic and B. Nizic, Reduction method for dimensionally regulated one loop N point Feynman integrals, Eur. Phys. J. C 35 (2004) 105 [hep-ph/0303184] [ INSPIRE].

    Article  ADS  Google Scholar 

  66. W. Giele and E. Glover, A calculational formalism for one loop integrals, JHEP 04 (2004) 029 [hep-ph/0402152] [ INSPIRE].

    Article  ADS  Google Scholar 

  67. W. Giele, E. Glover and G. Zanderighi, Numerical evaluation of one-loop diagrams near exceptional momentum configurations, Nucl. Phys. Proc. Suppl. 135 (2004) 275 [hep-ph/0407016] [ INSPIRE].

    Article  ADS  Google Scholar 

  68. T. Binoth, J. Guillet, G. Heinrich, E. Pilon and C. Schubert, An algebraic/numerical formalism for one-loop multi-leg amplitudes, JHEP 10 (2005) 015 [hep-ph/0504267] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. R. Ellis, W. Giele and G. Zanderighi, Semi-numerical evaluation of one-loop corrections, Phys. Rev. D 73 (2006) 014027 [hep-ph/0508308] [ INSPIRE].

    ADS  Google Scholar 

  70. A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [ INSPIRE].

    Article  ADS  Google Scholar 

  71. R. Ellis, W. Giele and G. Zanderighi, The one-loop amplitude for six-gluon scattering, JHEP 05 (2006) 027 [hep-ph/0602185] [ INSPIRE].

    Article  ADS  Google Scholar 

  72. T. Binoth, J. Guillet and G. Heinrich, Algebraic evaluation of rational polynomials in one-loop amplitudes, JHEP 02 (2007) 013 [hep-ph/0609054] [ INSPIRE].

    Article  ADS  Google Scholar 

  73. T. Diakonidis et al., On the tensor reduction of one-loop pentagons and hexagons, Nucl. Phys. Proc. Suppl. 183 (2008) 109 [arXiv:0807.2984] [ INSPIRE].

    Article  ADS  Google Scholar 

  74. T. Diakonidis et al., A Complete reduction of one-loop tensor 5 and 6-point integrals, Phys. Rev. D 80 (2009) 036003 [arXiv:0812.2134] [ INSPIRE].

    Google Scholar 

  75. G. Ossola, C.G. Papadopoulos and R. Pittau, Reduction of one-loop amplitudes at the integrand level: NLO QCD calculations, Acta Phys. Polon. B 39 (2008) 1685 [ INSPIRE].

    ADS  Google Scholar 

  76. W. Gong, Z. Nagy and D.E. Soper, Direct numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev. D 79 (2009) 033005 [arXiv:0812.3686] [ INSPIRE].

    ADS  Google Scholar 

  77. A. van Hameren, Multi-gluon one-loop amplitudes using tensor integrals, JHEP 07 (2009) 088 [arXiv:0905.1005] [ INSPIRE].

    Article  Google Scholar 

  78. G. Bélanger et al., Automatic calculations in high energy physics and Grace at one-loop, Phys. Rept. 430 (2006) 117 [hep-ph/0308080] [ INSPIRE].

    Article  ADS  Google Scholar 

  79. F. del Aguila and R. Pittau, Recursive numerical calculus of one-loop tensor integrals, JHEP 07 (2004) 017 [hep-ph/0404120] [ INSPIRE].

    Article  Google Scholar 

  80. A. van Hameren, J. Vollinga and S. Weinzierl, Automated computation of one-loop integrals in massless theories, Eur. Phys. J. C 41 (2005) 361 [hep-ph/0502165] [ INSPIRE].

    ADS  Google Scholar 

  81. T. Binoth, J.-P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [ INSPIRE].

    Article  ADS  MATH  Google Scholar 

  82. F. Campanario, C. Englert, M. Rauch and D. Zeppenfeld, Precise predictions for Wγγ + jet production at hadron colliders, Phys. Lett. B 704 (2011) 515 [arXiv:1106.4009] [ INSPIRE].

    Article  ADS  Google Scholar 

  83. T. Reiter, An automated approach for \( q\bar{q}\;tob\bar{b}b\bar{b} \) at Next-to-Leading Order QCD, arXiv:0903.4648 [ INSPIRE].

  84. Wolfram Research Inc., Mathematica, version 5.2, Champaign, U.S.A. (2005).

  85. R. Mertig, M. Böhm and A. Denner, FEYN CALC: computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [ INSPIRE].

    Article  ADS  Google Scholar 

  86. K. Hagiwara and D. Zeppenfeld, Helicity amplitudes for heavy lepton production in e + e annihilation, Nucl. Phys. B 274 (1986) 1 [ INSPIRE].

    Article  ADS  Google Scholar 

  87. K. Hagiwara and D. Zeppenfeld, Amplitudes for multiparton processes involving a current at e + e , e ± p and hadron colliders, Nucl. Phys. B 313 (1989) 560 [ INSPIRE].

    Article  ADS  Google Scholar 

  88. A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to \( t\bar{t}b\bar{b} \) production at the LHC: 1. Quark-antiquark annihilation, JHEP 08 (2008) 108 [arXiv:0807.1248] [ INSPIRE].

    Article  ADS  Google Scholar 

  89. F. Campanario, V. Hankele, C. Oleari, S. Prestel and D. Zeppenfeld, QCD corrections to charged triple vector boson production with leptonic decay, Phys. Rev. D 78 (2008) 094012 [arXiv:0809.0790] [ INSPIRE].

    ADS  Google Scholar 

  90. G. Bozzi, F. Campanario, V. Hankele and D. Zeppenfeld, NLO QCD corrections to W + W γ and ZZγ production with leptonic decays, Phys. Rev. D 81 (2010) 094030 [arXiv:0911.0438] [ INSPIRE].

    ADS  Google Scholar 

  91. G. Bozzi, F. Campanario, M. Rauch, H. Rzehak and D. Zeppenfeld, NLO QCD corrections to W ± Zγ production with leptonic decays, Phys. Lett. B 696 (2011) 380 [arXiv:1011.2206] [ INSPIRE].

    Article  ADS  Google Scholar 

  92. G. Bozzi, F. Campanario, M. Rauch and D. Zeppenfeld, W ± γγ production with leptonic decays at NLO QCD, Phys. Rev. D 83 (2011) 114035 [arXiv:1103.4613] [ INSPIRE].

    ADS  Google Scholar 

  93. F. Campanario, C. Englert and M. Spannowsky, QCD corrections to non-standard WZ + jet production with leptonic decays at the LHC, Phys. Rev. D 82 (2010) 054015 [arXiv:1006.3090] [ INSPIRE].

    ADS  Google Scholar 

  94. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e  → 4 fermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [ INSPIRE].

    Article  ADS  Google Scholar 

  95. S. Dittmaier, Separation of soft and collinear singularities from one loop N point integrals, Nucl. Phys. B 675 (2003) 447 [hep-ph/0308246] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  96. K. Arnold et al., VBFNLO: A Parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun. 180 (2009) 1661 [arXiv:0811.4559] [ INSPIRE].

    Article  ADS  Google Scholar 

  97. K. Arnold, T. Figy, B. Jager and D. Zeppenfeld, Next-to-leading order QCD corrections to Higgs boson production in association with a photon via weak-boson fusion at the LHC, JHEP 08 (2010) 088 [arXiv:1006.4237] [ INSPIRE].

    Article  ADS  Google Scholar 

  98. T. Figy, V. Hankele and D. Zeppenfeld, Next-to-leading order QCD corrections to Higgs plus three jet production in vector-boson fusion, JHEP 02 (2008) 076 [arXiv:0710.5621] [ INSPIRE].

    Article  ADS  Google Scholar 

  99. H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity Amplitude Subroutines for Feynman diagram evaluations, KEK-91-11 (1991).

  100. J. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45 [ INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Campanario.

Additional information

ArXiv ePrint: 1105.0920

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campanario, F. Towards pp → VVjj at NLO QCD: bosonic contributions to triple vector boson production plus jet. J. High Energ. Phys. 2011, 70 (2011). https://doi.org/10.1007/JHEP10(2011)070

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)070

Keywords

Navigation