Skip to main content
Log in

Relative entropy and holography

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Relative entropy between two states in the same Hilbert space is a fundamental statistical measure of the distance between these states. Relative entropy is always positive and increasing with the system size. Interestingly, for two states which are infinitesimally different to each other, vanishing of relative entropy gives a powerful equation ΔS = ΔH for the first order variation of the entanglement entropy ΔS and the expectation value of the modular Hamiltonian ΔH. We evaluate relative entropy between the vacuum and other states for spherical regions in the AdS/CFT framework. We check that the relevant equations and inequalities hold for a large class of states, giving a strong support to the holographic entropy formula. We elaborate on potential uses of the equation ΔS = ΔH for vacuum state tomography and obtain modified versions of the Bekenstein bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Levin and X.-G. Wen, Detecting Topological Order in a Ground State Wave Function, Phys. Rev. Lett. 96 (2006) 110405 [cond-mat/0510613].

    Article  ADS  Google Scholar 

  2. A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Hamma, R. Ionicioiu and P. Zanardi, Ground state entanglement and geometric entropy in the Kitaev model [rapid communication], Phys. Lett. A 337 (2005) 22 [quant-ph/0406202].

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    Article  Google Scholar 

  5. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory: A Non-technical introduction, Int. J. Quant. Inf. 4 (2006) 429 [quant-ph/0505193] [INSPIRE].

    Article  MATH  Google Scholar 

  6. I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. T. Nishioka and T. Takayanagi, AdS Bubbles, Entropy and Closed String Tachyons, JHEP 01 (2007) 090 [hep-th/0611035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. P. Buividovich and M. Polikarpov, Numerical study of entanglement entropy in SU(2) lattice gauge theory, Nucl. Phys. B 802 (2008) 458 [arXiv:0802.4247] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. Y. Nakagawa, A. Nakamura, S. Motoki and V. Zakharov, Quantum entanglement in SU(3) lattice Yang-Mills theory at zero and finite temperatures, PoS(Lattice 2010)281 [arXiv:1104.1011] [INSPIRE].

  10. H. Casini and M. Huerta, A Finite entanglement entropy and the c-theorem, Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. V. Balasubramanian, M.B. McDermott and M. Van Raamsdonk, Momentum-space entanglement and renormalization in quantum field theory, Phys. Rev. D 86 (2012) 045014 [arXiv:1108.3568] [INSPIRE].

    ADS  Google Scholar 

  12. H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].

    ADS  Google Scholar 

  13. R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].

    ADS  Google Scholar 

  14. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. R.D. Sorkin, On the Entropy of the Vacuum Outside a Horizon, in proceedings of 10th Int. Conf. on General Relativity and Gravitation, Padova, Italy, 4-9 July 1983, General Relativity and Gravitation, Vol. 1, Classical Relativity, B. Bertotti, F. de Felice and A. Pascolini eds., Consiglio Nazionale delle Ricerche, Rome, Italy (1983).

  16. L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A Quantum Source of Entropy for Black Holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. V.P. Frolov and I. Novikov, Dynamical origin of the entropy of a black hole, Phys. Rev. D 48 (1993) 4545 [gr-qc/9309001] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. L. Susskind and J. Uglum, Black hole entropy in canonical quantum gravity and superstring theory, Phys. Rev. D 50 (1994) 2700 [hep-th/9401070] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. S.N. Solodukhin, Entanglement entropy of black holes, Living Rev. Rel. 14 (2011) 8 [arXiv:1104.3712] [INSPIRE].

    Google Scholar 

  21. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. S.D. Mathur, The Information paradox: A Pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. S.L. Braunstein, S. Pirandola and K. yczkowski, Entangled black holes as ciphers of hidden information, Physical Review Letters 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE].

  25. M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  26. V.E. Hubeny and M. Rangamani, Causal Holographic Information, JHEP 06 (2012) 114 [arXiv:1204.1698] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The Gravity Dual of a Density Matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].

    Article  ADS  Google Scholar 

  28. E. Bianchi and R.C. Myers, On the Architecture of Spacetime Geometry, arXiv:1212.5183 [INSPIRE].

  29. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

    MathSciNet  Google Scholar 

  32. T. Takayanagi, Entanglement Entropy from a Holographic Viewpoint, Class. Quant. Grav. 29 (2012) 153001 [arXiv:1204.2450] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

    ADS  Google Scholar 

  34. L.-Y. Hung, R.C. Myers and M. Smolkin, On Holographic Entanglement Entropy and Higher Curvature Gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].

    Article  ADS  Google Scholar 

  35. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, arXiv:1304.4926 [INSPIRE].

  37. A. Rényi, On measures of information and entropy, in proceedings of the 4 th Berkeley Symposium on Mathematics, Statistics and Probability, 1 (1961) 547, Uiversity of California Press, Berkeley, CA, U.S.A. [http://digitalassets.lib.berkeley.edu/math/ucb/text/math s4 v1 article-27.pdf].

  38. A. Rényi, On the foundations of information theory, Rev. Int. Stat. Inst. 33 (1965) 1.

    Article  MATH  Google Scholar 

  39. K. Zyczkowski, Renyi extrapolation of Shannon entropy, Open Syst. Inf. Dyn. 10 (2003) 297 [quant-ph/0305062].

    Article  MathSciNet  MATH  Google Scholar 

  40. C. Beck and F. Schlögl, Thermodynamics of chaotic systems, Cambridge University Press, Cambridge, U.K. (1993).

    Book  Google Scholar 

  41. P. Calabrese and A. Lefevre, Entanglement spectrum in one-dimensional systems, Phys. Rev. A 78 (2008) 032329 [arXiv:0806.3059].

    Article  ADS  Google Scholar 

  42. T. Faulkner, The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].

  43. T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].

  44. L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic Calculations of Renyi Entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. A. Wehrl, General properties of entropy, Rev. Mod. Phys. 50 (1978) 221 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. V. Vedral, The role of relative entropy in quantum information theory, Rev. Mod. Phys. 74 (2002) 197 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. R. Haag, Local quantum physics: Fields, particles, algebras, Texts and monographs in physics, Springer, Berlin, Germany (1992) [INSPIRE].

    Book  Google Scholar 

  48. H. Li and F.D.M. Haldane, Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States, Phys. Rev. Lett. 101 (2008) 010504 [arXiv:0805.0332].

    Article  ADS  Google Scholar 

  49. A.M. Turner, F. Pollmann and E. Berg, Topological phases of one-dimensional fermions: An entanglement point of view, Phys. Rev. B 83 (2011) 075102 [arXiv:1008.4346].

    Article  ADS  Google Scholar 

  50. L. Fidkowski, Entanglement Spectrum of Topological Insulators and Superconductors, Phys. Rev. Lett. 104 (2010) 130502 [arXiv:0909.2654].

    Article  ADS  Google Scholar 

  51. H. Yao and X.-L. Qi, Entanglement Entropy and Entanglement Spectrum of the Kitaev Model, Phys. Rev. Lett. 105 (2010) 080501 [arXiv:1001.1165].

    Article  ADS  Google Scholar 

  52. J. Bisognano and E. Wichmann, On the Duality Condition for Quantum Fields, J. Math. Phys. 17 (1976) 303 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. J. Bisognano and E. Wichmann, On the Duality Condition for a Hermitian Scalar Field, J. Math. Phys. 16 (1975) 985 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. W. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].

    ADS  Google Scholar 

  55. P.D. Hislop and R. Longo, Modular structure of the local algebras associated with the free massless scalar field theory, Commun. Math. Phys. 84 (1982) 71 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. H. Borchers and J. Yngvason, Modular groups of quantum fields in thermal states, J. Math. Phys. 40 (1999) 601 [math-ph/9805013] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  58. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  59. R.C. Myers, Stress tensors and Casimir energies in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 046002 [hep-th/9903203] [INSPIRE].

    ADS  Google Scholar 

  60. W. Fischler, A. Kundu and S. Kundu, Holographic Mutual Information at Finite Temperature, Phys. Rev. D 87 (2013) 126012 [arXiv:1212.4764] [INSPIRE].

    ADS  Google Scholar 

  61. J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, Thermodynamical Property of Entanglement Entropy for Excited States, Phys. Rev. Lett. 110 (2013) 091602 [arXiv:1212.1164] [INSPIRE].

    Article  ADS  Google Scholar 

  62. V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. R.C. Myers, M.F. Paulos and A. Sinha, Holographic Hydrodynamics with a Chemical Potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. C. Fefferman and C. R. Graham, Conformal Invariants, in lie Cartan et les Mathématiques daujourd hui, Astérisque (1985), pg. 95.

  65. C. Fefferman and C.R. Graham, The ambient metric, arXiv:0710.0919 [INSPIRE].

  66. S. Nojiri and S.D. Odintsov, On the conformal anomaly from higher derivative gravity in AdS/CFT correspondence, Int. J. Mod. Phys. A 15 (2000) 413 [hep-th/9903033] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  67. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. A. Schwimmer and S. Theisen, Entanglement Entropy, Trace Anomalies and Holography, Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. L.-Y. Hung, R.C. Myers and M. Smolkin, Some Calculable Contributions to Holographic Entanglement Entropy, JHEP 08 (2011) 039 [arXiv:1105.6055] [INSPIRE].

    Article  ADS  Google Scholar 

  70. M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. S. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  73. V.E. Korepin, Universality of Entropy Scaling in One Dimensional Gapless Models, Phys. Rev. Lett. 92 (2004) 096402 [cond-mat/0311056].

    Article  ADS  Google Scholar 

  74. C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  75. P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, New York, U.S.A. (1997).

    Book  MATH  Google Scholar 

  76. J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  77. S.S. Gubser, Curvature singularities: The Good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  78. R.C. Myers and O. Tafjord, Superstars and giant gravitons, JHEP 11 (2001) 009 [hep-th/0109127] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. M.A. Nielsen and I.L. Chuang, Quantum Computation and quantum Information, Cambridge University Press, Cambridge, U.K. (2000).

    MATH  Google Scholar 

  80. H. Casini, M. Huerta and R. C. Myers, Mutual information and a c-theorem for d = 3, in preparation.

  81. H. Halvorson, Reeh-Schlieder defeats Newton-Wigner: On alternative localization schemes in relativistic quantum field theory, Phil. Sci. 68 (2001) 111 [quant-ph/0007060] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  82. L.Y. Hung, R.C. Myers and M. Smolkin, Twist operators in higher dimensions, in preparation.

  83. H. Liu and A.A. Tseytlin, On four point functions in the CFT/AdS correspondence, Phys. Rev. D 59 (1999) 086002 [hep-th/9807097] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  84. E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, hep-th/0201253 [INSPIRE].

  85. J.D. Bekenstein, A Universal Upper Bound on the Entropy to Energy Ratio for Bounded Systems, Phys. Rev. D 23 (1981) 287 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  86. J.D. Bekenstein, Generalized second law of thermodynamics in black hole physics, Phys. Rev. D 9 (1974) 3292 [INSPIRE].

    ADS  Google Scholar 

  87. H. Casini, Relative entropy and the Bekenstein bound, Class. Quant. Grav. 25 (2008) 205021 [arXiv:0804.2182] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  88. D. Marolf, D. Minic and S.F. Ross, Notes on space-time thermodynamics and the observer dependence of entropy, Phys. Rev. D 69 (2004) 064006 [hep-th/0310022] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  89. D. Marolf, A Few words on entropy, thermodynamics and horizons, hep-th/0410168 [INSPIRE].

  90. R. Bousso, Light sheets and Bekensteins bound, Phys. Rev. Lett. 90 (2003) 121302 [hep-th/0210295] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  91. E. Bianchi, Horizon entanglement entropy and universality of the graviton coupling, arXiv:1211.0522 [INSPIRE].

  92. M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of Entanglement Entropy from Einstein Equation, arXiv:1304.7100 [INSPIRE].

  93. M. Nozaki, T. Numasawa and T. Takayanagi, Holographic Local Quenches and Entanglement Density, JHEP 05 (2013) 080 [arXiv:1302.5703] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  94. D. Allahbakhshi, M. Alishahiha and A. Naseh, Entanglement Thermodynamics, arXiv:1305.2728 [INSPIRE].

  95. G. Wong, I. Klich, L.A. Pando Zayas and D. Vaman, Entanglement Temperature and Entanglement Entropy of Excited States, arXiv:1305.3291 [INSPIRE].

  96. V. Vedral, Introduction to quantum information science, Oxford University Press, New York, U.S.A. (2006).

    Book  MATH  Google Scholar 

  97. P. Martinetti and C. Rovelli, Diamondss temperature: Unruh effect for bounded trajectories and thermal time hypothesis, Class. Quant. Grav. 20 (2003) 4919 [gr-qc/0212074] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  98. V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in anti-de Sitter space-time, Phys. Rev. D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  99. M. Headrick and T. Takayanagi, A Holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  100. A.C. Wall, Maximin Surfaces and the Strong Subadditivity of the Covariant Holographic Entanglement Entropy, arXiv:1211.3494 [INSPIRE].

  101. T. Sagawa, Second Law-Like Inequalities with Quantum Relative Entropy: An Introduction, arXiv:1202.0983.

  102. R.D. Sorkin, Toward a Proof of Entropy Increase in the Presence of Quantum Black Holes, Phys. Rev. Lett. 56 (1986) 1885.

    Article  MathSciNet  ADS  Google Scholar 

  103. R.D. Sorkin, The statistical mechanics of black hole thermodynamics, gr-qc/9705006 [INSPIRE].

  104. A.C. Wall, A proof of the generalized second law for rapidly changing fields and arbitrary horizon slices, Phys. Rev. D 85 (2012) 104049 [arXiv:1105.3445] [INSPIRE].

    ADS  Google Scholar 

  105. A.C. Wall, A Proof of the generalized second law for rapidly-evolving Rindler horizons, Phys. Rev. D 82 (2010) 124019 [arXiv:1007.1493] [INSPIRE].

    ADS  Google Scholar 

  106. M. Pelath and R.M. Wald, Comment on entropy bounds and the generalized second law, Phys. Rev. D 60 (1999) 104009 [gr-qc/9901032] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  107. D. Marolf and R.D. Sorkin, On the status of highly entropic objects, Phys. Rev. D 69 (2004) 024014 [hep-th/0309218] [INSPIRE].

    ADS  Google Scholar 

  108. D.N. Page, Comment on a universal upper bound on the entropy to energy ratio for bounded systems, Phys. Rev. D 26 (1982) 947 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  109. W. Unruh and R.M. Wald, Acceleration Radiation and Generalized Second Law of Thermodynamics, Phys. Rev. D 25 (1982) 942 [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Yan Hung.

Additional information

ArXiv ePrint: 1305.3182

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanco, D.D., Casini, H., Hung, LY. et al. Relative entropy and holography. J. High Energ. Phys. 2013, 60 (2013). https://doi.org/10.1007/JHEP08(2013)060

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)060

Keywords

Navigation