Skip to main content
Log in

Some calculable contributions to holographic entanglement entropy

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Using the AdS/CFT correspondence, we examine entanglement entropy for a boundary theory deformed by a relevant operator and establish two results. The first is that if there is a contribution which is logarithmic in the UV cut-off, then the coefficient of this term is independent of the state of the boundary theory. In fact, the same is true of all of the coefficients of contributions which diverge as some power of the UV cut-off. Secondly, we show that the relevant deformation introduces new logarithmic contributions to the entanglement entropy. The form of some of these new contributions is similar to that found in investigations of entanglement entropy in a free massive scalar field theory [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.P. Hertzberg and F. Wilczek, Some calculable contributions to entanglement entropy, Phys. Rev. Lett. 106 (2011) 050404 [arXiv:1007.0993] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  2. D.V. Fursaev, Entanglement entropy in critical phenomena and analogue models of quantum gravity, Phys. Rev. D 73 (2006) 124025 [hep-th/0602134] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  3. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [SPIRES].

    ADS  Google Scholar 

  6. D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  7. L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [SPIRES].

    Article  ADS  Google Scholar 

  8. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  9. S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  10. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  11. D.N. Kabat and M.J. Strassler, A comment on entropy and area, Phys. Lett. B 329 (1994) 46 [hep-th/9401125] [SPIRES].

    ADS  Google Scholar 

  12. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [SPIRES].

  13. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Schwimmer and S. Theisen, Entanglement entropy, trace anomalies and holography, Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  15. C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  17. C. Fefferman and C.R. Graham, Conformal invariants, in Élie Cartan et les mathématiques d’adjourd’hui, Astérisque (1985) 95.

  18. C. Fefferman and C.R. Graham, The ambient metric, arXiv:0710.0919.

  19. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  20. R.C. Myers, Stress tensors and Casimir energies in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 046002 [hep-th/9903203] [SPIRES].

    ADS  Google Scholar 

  21. C.R. Graham and E. Witten, Conformal anomaly of submanifold observables in AdS/CFT correspondence, Nucl. Phys. B 546 (1999) 52 [hep-th/9901021] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  22. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  23. P. Breitenlohner and D.Z. Freedman, Positive energy in anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett. B 115 (1982) 197 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  24. P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys. 144 (1982) 249 [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. L. Mezincescu and P.K. Townsend, Stability at a local maximum in higher dimensional anti-de Sitter space and applications to supergravity, Annals Phys. 160 (1985) 406 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Petkou and K. Skenderis, A non-renormalization theorem for conformal anomalies, Nucl. Phys. B 561 (1999) 100 [hep-th/9906030] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  27. I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10 (2004) 075 [hep-th/0407071] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  28. I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, hep-th/0404176 [SPIRES].

  29. B.C. van Rees, Irrelevant deformations and the holographic Callan-Symanzik equation, arXiv:1105.5396 [SPIRES].

  30. K. Pilch and N.P. Warner, N = 2 supersymmetric RG flows and the IIB dilaton, Nucl. Phys. B 594 (2001) 209 [hep-th/0004063] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  31. A. Brandhuber and K. Sfetsos, An N = 2 gauge theory and its supergravity dual, Phys. Lett. B 488 (2000) 373 [hep-th/0004148] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  32. A. Buchel, S. Deakin, P. Kerner and J.T. Liu, Thermodynamics of the N = 2* strongly coupled plasma, Nucl. Phys. B 784 (2007) 72 [hep-th/0701142] [SPIRES].

    Article  ADS  Google Scholar 

  33. A. Buchel and R.C. Myers, unpublished.

  34. R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [SPIRES].

    ADS  Google Scholar 

  35. S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions, Phys. Lett. B 309 (1993) 279 [hep-th/9302047] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  36. B. Hsu, M. Mulligan, E. Fradkin and E.A. Kim, Universal entanglement entropy in two-dimensional conformal quantum critical points, Phys. Rev. B 79 (2009) 115421 [arXiv:0812.0203] [SPIRES].

    ADS  Google Scholar 

  37. M. Levin and X.G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (2006) 110405 [cond-mat/0510613] [SPIRES].

    Article  ADS  Google Scholar 

  38. A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  39. H. Casini, Mutual information challenges entropy bounds, Class. Quant. Grav. 24 (2007) 1293 [gr-qc/0609126] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. H. Casini and M. Huerta, Remarks on the entanglement entropy for disconnected regions, JHEP 03 (2009) 048 [arXiv:0812.1773] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  41. H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [SPIRES].

    MathSciNet  Google Scholar 

  42. B. Swingle, Mutual information and the structure of entanglement in quantum field theory, arXiv:1010.4038 [SPIRES].

  43. J.deBoer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock gravities, arXiv:1101.5781 [SPIRES].

  44. I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [SPIRES].

  46. M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  47. T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [SPIRES].

    MathSciNet  Google Scholar 

  48. C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman ed., San Francisco U.S.A. (1973) [SPIRES].

  49. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  50. M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortschr. Phys. 48 (2000) 125 [hep-th/9812032] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  51. M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  52. M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  53. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  54. J. Cardy and P. Calabrese, Unusual corrections to scaling in entanglement entropy, J. Stat. Mech. (2010) P04023 [arXiv:1002.4353] [SPIRES].

  55. S. Nojiri and S.D. Odintsov, On the conformal anomaly from higher derivative gravity in AdS/CFT correspondence, Int. J. Mod. Phys. A 15 (2000) 413 [hep-th/9903033] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  56. M. Blau, K.S. Narain and E. Gava, On subleading contributions to the AdS/CFT trace anomaly, JHEP 09 (1999) 018 [hep-th/9904179] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  57. R.C. Myers and M. Smolkin, Some relevant contributions to entanglement entropy, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Yan Hung.

Additional information

ArXiv ePrint: 1105.6055

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, LY., Myers, R.C. & Smolkin, M. Some calculable contributions to holographic entanglement entropy. J. High Energ. Phys. 2011, 39 (2011). https://doi.org/10.1007/JHEP08(2011)039

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)039

Keywords

Navigation