Skip to main content
Log in

Pure-glue hidden valleys through the Higgs portal

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the possibility that the Higgs boson can act as a link to a hidden sector in the context of pure-glue hidden valley models. In these models the standard model is weakly coupled, through loops of heavy messengers fields, to a hidden sector whose low energy dynamics is described by a pure-Yang-Mills theory. Such a hidden sector contains several metastable hidden glueballs. In this work we shall extend earlier results on hidden valleys to include couplings of the messengers to the standard model Higgs sector. The effective interactions at one-loop couple the hidden gluons to the standard model particles through the Higgs sector. These couplings in turn induce hidden glueball decays to fermion pairs, or cascade decays with multiple Higgs emission. The presence of effective operators of different mass dimensions, often competing with each other, together with a great diversity of states, leads to a great variability in the lifetimes and decay modes of the hidden glueballs. We find that most of the operators considered in this paper are not heavily constrained by precision electroweak physics, therefore leaving plenty of room in the parameter space to be explored by the future experiments at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [SPIRES].

    ADS  Google Scholar 

  2. M.J. Strassler and K.M. Zurek, Discovering the Higgs through highly-displaced vertices, Phys. Lett. B 661 (2008) 263 [hep-ph/0605193] [SPIRES].

    ADS  Google Scholar 

  3. M.J. Strassler, Possible effects of a hidden valley on supersymmetric phenomenology, hep-ph/0607160 [SPIRES].

  4. M.J. Strassler, Why unparticle models with mass gaps are examples of hidden valleys, arXiv:0801.0629 [SPIRES].

  5. T. Han, Z. Si, K.M. Zurek and M.J. Strassler, Phenomenology of hidden valleys at hadron colliders, JHEP 07 (2008) 008 [arXiv:0712.2041] [SPIRES].

    Article  ADS  Google Scholar 

  6. M.J. Strassler, On the phenomenology of hidden valleys with heavy flavor, arXiv:0806.2385 [SPIRES].

  7. Z. Chacko, H.-S. Goh and R. Harnik, The twin Higgs: natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [SPIRES].

    Article  ADS  Google Scholar 

  8. G. Burdman, Z. Chacko, H.-S. Goh and R. Harnik, Folded supersymmetry and the LEP paradox, JHEP 02 (2007) 009 [hep-ph/0609152] [SPIRES].

    Article  ADS  Google Scholar 

  9. K.M. Zurek, Multi-component dark matter, Phys. Rev. D 79 (2009) 115002 [arXiv:0811.4429] [SPIRES].

    ADS  Google Scholar 

  10. J. March-Russell, S.M. West, D. Cumberbatch and D. Hooper, Heavy dark matter through the Higgs portal, JHEP 07 (2008) 058 [arXiv:0801.3440] [SPIRES].

    Article  ADS  Google Scholar 

  11. N. Arkani-Hamed and N. Weiner, LHC signals for a superunified theory of dark matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [SPIRES].

    Article  ADS  Google Scholar 

  12. A.E. Nelson and C. Spitzer, Slightly non-minimal dark matter in PAMELA and ATIC, arXiv:0810.5167 [SPIRES].

  13. R. Blumenhagen, M. Cvetic, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [SPIRES].

    Article  ADS  Google Scholar 

  14. J.E. Juknevich, D. Melnikov and M.J. Strassler, A pure-glue hidden valley I. States and decays, JHEP 07 (2009) 055 [arXiv:0903.0883] [SPIRES].

    Article  ADS  Google Scholar 

  15. C.J. Morningstar and M.J. Peardon, The glueball spectrum from an anisotropic lattice study, Phys. Rev. D 60 (1999) 034509 [hep-lat/9901004] [SPIRES].

    ADS  Google Scholar 

  16. Y. Chen et al., Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D 73 (2006) 014516 [hep-lat/0510074] [SPIRES].

    ADS  Google Scholar 

  17. V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, In a search for scalar gluonium, Nucl. Phys. B 165 (1980) 67 [SPIRES].

    Article  ADS  Google Scholar 

  18. V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, A theory of the J/Ψ → η(η′) gamma decays, Nucl. Phys. B 165 (1980) 55 [SPIRES].

    Article  ADS  Google Scholar 

  19. V.A. Novikov, M. A. Shifman, A.I. Vainshtein and V.I. Zakharov, η meson as pseudoscalar gluonium, Phys. Lett. B 86 (1979) 347 [JETP Lett. 29 (1979) 594] [Pisma Zh. Eksp. Teor. Fiz. 29 (1979) 649] [SPIRES].

    ADS  Google Scholar 

  20. J.F. Donoghue, K. Johnson and B.A. Li, Low mass glueballs in the meson spectrum, Phys. Lett. B 99 (1981) 416 [SPIRES].

    ADS  Google Scholar 

  21. J.M. Cornwall and A. Soni, Glueballs as bound states of massive gluons, Phys. Lett. B 120 (1983) 431 [SPIRES].

    ADS  Google Scholar 

  22. J. Kuti, Exotica and the confining flux, Nucl. Phys. Proc. Suppl. 73 (1999) 72 [hep-lat/9811021] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  23. M. Loan and Y. Ying, Sizes of lightest glueballs in SU(3) lattice gauge theory, Prog. Theor. Phys. 116 (2006) 169 [hep-lat/0603030] [SPIRES].

    Article  ADS  Google Scholar 

  24. V. Mathieu, N. Kochelev and V. Vento, The physics of glueballs, Int. J. Mod. Phys. E 18 (2009) 1 [arXiv:0810.4453] [SPIRES].

    ADS  Google Scholar 

  25. A.E. Faraggi and M. Pospelov, Self-interacting dark matter from the hidden heterotic-string sector, A stropart. Phys. 16 (2002) 451 [hep-ph/0008223] [SPIRES].

    ADS  Google Scholar 

  26. A. Falkowski, J. Juknevich and J. Shelton, Dark matter through the neutrino portal, arXiv:0908.1790 [SPIRES].

  27. G.D. Kribs, T.S. Roy, J. Terning and K.M. Zurek, Quirky composite dark matter, Phys. Rev. D 81 (2010) 095001 [arXiv:0909.2034] [SPIRES].

    ADS  Google Scholar 

  28. V.A. Novikov, L.B. Okun, M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Charmonium and gluons: basic experimental facts and theoretical introduction, Phys. Rept. 41 (1978) 1 [SPIRES].

    Article  ADS  Google Scholar 

  29. M.J. Strassler, Field theory without Feynman diagrams: a demonstration using actions induced by heavy particles, SLAC-PUB-5978 [SPIRES].

  30. S. Groote and A.A. Pivovarov, Heavy quark induced effective action for gauge fields in the SU(N c ) × U(1) model and the low-energy structure of heavy quark current correlators, Eur. Phys. J. C 21 (2001) 133 [hep-ph/0103313] [SPIRES].

    Article  ADS  Google Scholar 

  31. J.F. Gunion, H.E. Haber, G. Kane and S. Dawson, The Higgs hunter’s guide, Addison-Wesley, Reading U.S.A. (1990).

    Google Scholar 

  32. R.L. Jaffe, K. Johnson and Z. Ryzak, Qualitative features of the glueball spectrum, Ann. Phys. 168 (1986) 344 [SPIRES].

    Article  ADS  Google Scholar 

  33. L.B. Okun, Thetons, JETP Lett. 31 (1980) 144 [Pisma Zh. Eksp. Teor. Fiz. 31 (1979) 156] [SPIRES].

    ADS  Google Scholar 

  34. L.B. Okun, Theta particles, Nucl. Phys. B 173 (1980) 1 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. S. Gupta and H.R. Quinn, Heavy quarks and perturbative QCD calculations, Phys. Rev. D 25 (1982) 838 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. J. Kang, M.A. Luty and S. Nasri, The relic abundance of long-lived heavy colored particles, JHEP 09 (2008) 086 [hep-ph/0611322] [SPIRES].

    Article  ADS  Google Scholar 

  37. J. Kang and M.A. Luty, Macroscopic strings and ’quirks’ at colliders, JHEP 11 (2009) 065 [arXiv:0805.4642] [SPIRES].

    Article  ADS  Google Scholar 

  38. CDF collaboration, A. Abulencia et al., Search for new physics in lepton + photon + X events with 929 pb (−1) of \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 - TeV \), Phys. Rev. D 75 (2007) 112001 [hep-ex/0702029] [SPIRES].

    ADS  Google Scholar 

  39. CDF collaboration, T. Aaltonen et al., Search for anomalous production of events with two photons and additional energetic objects at CDF, arXiv:0910.5170 [SPIRES].

  40. CDF collaboration, T. Aaltonen et al., Search for heavy, long-lived neutralinos that decay to photons at CDF II using photon timing, Phys. Rev. D 78 (2008) 032015 [arXiv:0804.1043] [SPIRES].

    ADS  Google Scholar 

  41. G.D. Kribs, T. Plehn, M. Spannowsky and T.M.P. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [SPIRES].

    ADS  Google Scholar 

  42. D0 collaboration, V.M. Abazov et al., Search for Resonant Pair Production of long-lived particles decaying to \( b\bar{b} \) in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 - TeV \), Phys. Rev. Lett. 103 (2009) 071801 [arXiv:0906.1787] [SPIRES].

    Article  ADS  Google Scholar 

  43. D0 collaboration, V.M. Abazov et al., Search for long-lived particles decaying into electron or photon pairs with the D0 detector, Phys. Rev. Lett. 101 (2008) 111802 [arXiv:0806.2223] [SPIRES].

    Article  ADS  Google Scholar 

  44. B.W. Lynn, G. Penso and C. Verzegnassi, Strong interaction contributions to one loop leptonic process, Phys. Rev. D 35 (1987) 42 [SPIRES].

    ADS  Google Scholar 

  45. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].

    ADS  Google Scholar 

  46. J.E. Juknevich, D. Melnikov and M.J. Strassler, Searches for pure-glue hidden valleys at hadron colliders, in preparation.

  47. H. Georgi, A. Manohar and G.W. Moore, Constraints on a two Higgs interpretation of the zeta (8.3), Phys. Lett. B 149 (1984) 234 [SPIRES].

    ADS  Google Scholar 

  48. H. Georgi and L. Randall, Flavor conserving CP-violation in invisible axion models, Nucl. Phys. B 276 (1986) 241 [SPIRES].

    Article  ADS  Google Scholar 

  49. A.V. Manohar and M.B. Wise, Modifications to the properties of a light Higgs boson, Phys. Lett. B 636 (2006) 107 [hep-ph/0601212] [SPIRES].

    ADS  Google Scholar 

  50. S. Weinberg, Larger Higgs exchange terms in the neutron electric dipole moment, Phys. Rev. Lett. 63 (1989) 2333 [SPIRES].

    Article  ADS  Google Scholar 

  51. S. Chang, P.J. Fox and N. Weiner, Visible cascade Higgs decays to four photons at hadron colliders, Phys. Rev. Lett. 98 (2007) 111802 [hep-ph/0608310] [SPIRES].

    Article  ADS  Google Scholar 

  52. R. Dermisek and J.F. Gunion, A comparison of mixed-Higgs scenarios in the NMSSM and the MSSM, Phys. Rev. D 77 (2008) 015013 [arXiv:0709.2269] [SPIRES].

    ADS  Google Scholar 

  53. B.A. Dobrescu, G.L. Landsberg and K.T. Matchev, Higgs boson decays to CP-odd scalars at the Tevatron and beyond, Phys. Rev. D 63 (2001) 075003 [hep-ph/0005308] [SPIRES].

    ADS  Google Scholar 

  54. G. ’t Hooft and M.J.G. Veltman, Scalar one loop integrals, Nucl. Phys. B 153 (1979) 365 [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Juknevich.

Additional information

ArXiv ePrint: 0911.5616

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juknevich, J.E. Pure-glue hidden valleys through the Higgs portal. J. High Energ. Phys. 2010, 121 (2010). https://doi.org/10.1007/JHEP08(2010)121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2010)121

Keywords

Navigation