Skip to main content
Log in

Discovering the composite Higgs through the decay of a heavy fermion

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A possible composite nature of the Higgs could be revealed at the early stage of the LHC, by analyzing the channels where the Higgs is produced from the decay of a heavy fermion. The Higgs production from a singly-produced heavy bottom, in particular, proves to be a promising channel. For a value λ = 3 of the Higgs coupling to a heavy bottom, for example, we find that, considering a 125 GeV Higgs which decays into a pair of b-quarks, a discovery is possible at the 8 TeV LHC with 30 fb−1 if the heavy bottom is lighter than roughly 530 GeV (while an observation is possible for heavy bottom masses up to ≃ 650 GeV). Such a relatively light heavy bottom is realistic in composite Higgs models of the type considered and, up to now, experimentally allowed. At \( \sqrt {s} = {14} \) TeV the LHC sensitivity on the channel increases significantly. With λ = 3 a discovery can occur, with 100 fb−1, for heavy bottom masses up to ≃ 1040 GeV. In the case the heavy bottom was as light as ≃ 500 GeV, the 14 TeV LHC would be sensitive to the measure of the λ coupling in basically the full range λ > 1 predicted by the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = {7} \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  2. ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = {7} \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  3. D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

    ADS  Google Scholar 

  4. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].

    Article  ADS  Google Scholar 

  5. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  6. J. Mrazek and A. Wulzer, A strong sector at the LHC: top partners in same-sign dileptons, Phys. Rev. D 81 (2010) 075006 [arXiv:0909.3977] [INSPIRE].

    ADS  Google Scholar 

  7. R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states, JHEP 06 (2008) 026 [arXiv:0801.1679] [INSPIRE].

    Article  ADS  Google Scholar 

  8. S.S.D. Willenbrock and D.A. Dicus., Production of heavy quarks from W-gluon fusion, Phys. Rev. D 34 (1986) 155.

    ADS  Google Scholar 

  9. R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].

    Article  ADS  Google Scholar 

  10. R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs under LHC experimental scrutiny, EPJ Web Conf. 28 (2012) 08004 [arXiv:1202.1286] [INSPIRE].

    Article  Google Scholar 

  13. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, arXiv:1202.3144 [INSPIRE].

  14. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  15. G. Brooijmans et al., Les Houches 2011: physics at TeV colliders new physics working group report, arXiv:1203.1488 [INSPIRE].

  16. A. Azatov et al., Higgs boson production via vector-like top-partner decays: Diphoton or multilepton plus multijets channels at the LHC, arXiv:1204.0455 [INSPIRE].

  17. A. Carmona, M. Chala and J. Santiago, New Higgs production mechanism in composite Higgs models, JHEP 07 (2012) 049 [arXiv:1205.2378] [INSPIRE].

    Article  ADS  Google Scholar 

  18. C. Bini, R. Contino and N. Vignaroli, Heavy-light decay topologies as a new strategy to discover a heavy gluon, JHEP 01 (2012) 157 [arXiv:1110.6058] [INSPIRE].

    Article  ADS  Google Scholar 

  19. N. Vignaroli, A new strategy to discover heavy colored vectors at the early LHC, Nuovo Cim. C 034N6 (2011) 213 [arXiv:1107.4558] [INSPIRE].

    Google Scholar 

  20. R. Barcelo, A. Carmona, M. Chala, M. Masip and J. Santiago, Single vectorlike quark production at the LHC, Nucl. Phys. B 857 (2012) 172 [arXiv:1110.5914] [INSPIRE].

    Article  ADS  Google Scholar 

  21. K. Kong, M. McCaskey and G.W. Wilson, Multi-lepton signals from the top-prime quark at the LHC, JHEP 04 (2012) 079 [arXiv:1112.3041] [INSPIRE].

    Article  ADS  Google Scholar 

  22. N. Vignaroli, Phenomenology of heavy fermion and vector resonances in composite Higgs models, arXiv:1112.0218 [INSPIRE].

  23. N. Vignaroli, ΔF = 1 constraints on composite Higgs models with LR parity, arXiv:1204.0478 [INSPIRE].

  24. N. Vignaroli, Early discovery of top partners and test of the Higgs nature, arXiv:1207.0830 [INSPIRE].

  25. N. Arkani-Hamed, A. Cohen, E. Katz and A. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the little Higgs model, Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040] [INSPIRE].

    ADS  Google Scholar 

  27. M. Perelstein, M.E. Peskin and A. Pierce, Top quarks and electroweak symmetry breaking in little Higgs models, Phys. Rev. D 69 (2004) 075002 [hep-ph/0310039] [INSPIRE].

    Google Scholar 

  28. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].

    ADS  Google Scholar 

  29. M.S. Carena, E. Ponton, J. Santiago and C.E. Wagner, Light Kaluza Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline b \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

    ADS  Google Scholar 

  31. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].

    Article  ADS  Google Scholar 

  32. D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].

    Article  ADS  Google Scholar 

  33. S. Walch, A. Burkert, T. Naab and M. Gritschneder, The formation and early evolution of protostellar disksI. Collapse of rigidly rotating prestellar cores, arXiv:0901.2127 [INSPIRE].

  34. M. Redi and A. Weiler, Flavor and CP invariant composite Higgs models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].

    Article  ADS  Google Scholar 

  35. ATLAS collaboration, Search for down-type fourth generation quarks with the ATLAS detector in events with one lepton and high transverse momentum hadronically decaying W bosons in \( \sqrt {s} = {7} \) TeV pp collisions, PH-EP-2011-230 (2012).

  36. J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].

    Article  ADS  Google Scholar 

  37. F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [INSPIRE].

    Article  ADS  Google Scholar 

  38. T. Stelzer and W. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [INSPIRE].

    Article  ADS  Google Scholar 

  39. N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].

    Article  ADS  Google Scholar 

  41. ATLAS collaboration, G. Aad et al., The ATLAS experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natascia Vignaroli.

Additional information

ArXiv ePrint: 1204.0468

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vignaroli, N. Discovering the composite Higgs through the decay of a heavy fermion. J. High Energ. Phys. 2012, 158 (2012). https://doi.org/10.1007/JHEP07(2012)158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)158

Keywords

Navigation