Skip to main content
Log in

Classical duals, Legendre transforms and the Vainshtein mechanism

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We show how to generalize the classical duals found by Gabadadze et al. to a very large class of self-interacting theories. This enables one to adopt a perturbative description beyond the scale at which classical perturbation theory breaks down in the original theory. This is particularly relevant if we want to test modified gravity scenarios that exhibit Vainshtein screening on solar system scales. We recognise the duals as being related to the Legendre transform of the original Lagrangian, and present a practical method for finding the dual in general; our methods can also be applied to self-interacting theories with a hierarchy of strong coupling scales, and with multiple fields. We find the classical dual of the full quintic galileon theory as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Bekenstein, Relativistic gravitation theory for the MOND paradigm, Phys. Rev. D 70 (2004) 083509 [Erratum ibid. D 71 (2005) 069901] [astro-ph/0403694] [INSPIRE].

  2. S.M. Carroll, V. Duvvuri, M. Trodden and M.S. Turner, Is cosmic speed-up due to new gravitational physics?, Phys. Rev. D 70 (2004) 043528 [astro-ph/0306438] [INSPIRE].

    ADS  Google Scholar 

  3. C. Deffayet, Cosmology on a brane in Minkowski bulk, Phys. Lett. B 502 (2001) 199 [hep-th/0010186] [INSPIRE].

    ADS  Google Scholar 

  4. A. Padilla, Cosmic acceleration from asymmetric branes, Class. Quant. Grav. 22 (2005) 681 [hep-th/0406157] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. C. Charmousis, R. Gregory and A. Padilla, Stealth acceleration and modified gravity, JCAP 10 (2007) 006 [arXiv:0706.0857] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. C. Deffayet, O. Pujolàs, I. Sawicki and A. Vikman, Imperfect dark energy from kinetic gravity braiding, JCAP 10 (2010) 026 [arXiv:1008.0048] [INSPIRE].

    Article  ADS  Google Scholar 

  7. N. Arkani-Hamed, S. Dimopoulos, G. Dvali and G. Gabadadze, Nonlocal modification of gravity and the cosmological constant problem, hep-th/0209227 [INSPIRE].

  8. S.M. Carroll and M.M. Guica, Sidestepping the cosmological constant with football shaped extra dimensions, hep-th/0302067 [INSPIRE].

  9. C. Charmousis, E.J. Copeland, A. Padilla and P.M. Saffin, General second order scalar-tensor theory, self tuning and the Fab Four, Phys. Rev. Lett. 108 (2012) 051101 [arXiv:1106.2000] [INSPIRE].

    Article  ADS  Google Scholar 

  10. C. Charmousis, E.J. Copeland, A. Padilla and P.M. Saffin, Self-tuning and the derivation of a class of scalar-tensor theories, Phys. Rev. D 85 (2012) 104040 [arXiv:1112.4866] [INSPIRE].

    ADS  Google Scholar 

  11. I. Kimpton and A. Padilla, Cleaning up the cosmological constant, arXiv:1203.1040 [INSPIRE].

  12. T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified gravity and cosmology, Phys. Rept. 513 (2012) 1 [arXiv:1106.2476] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. J. Khoury and A. Weltman, Chameleon fields: awaiting surprises for tests of gravity in space, Phys. Rev. Lett. 93 (2004) 171104 [astro-ph/0309300] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. Khoury and A. Weltman, Chameleon cosmology, Phys. Rev. D 69 (2004) 044026 [astro-ph/0309411] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. A. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett. B 39 (1972) 393 [INSPIRE].

    ADS  Google Scholar 

  16. C. Deffayet, G. Dvali, G. Gabadadze and A.I. Vainshtein, Nonperturbative continuity in graviton mass versus perturbative discontinuity, Phys. Rev. D 65 (2002) 044026 [hep-th/0106001] [INSPIRE].

    ADS  Google Scholar 

  17. N. Kaloper, A. Padilla and N. Tanahashi, Galileon hairs of Dyson spheres, Vainshtein’s coiffure and Hirsute bubbles, JHEP 10 (2011) 148 [arXiv:1106.4827] [INSPIRE].

    Article  ADS  Google Scholar 

  18. G. Dvali, Predictive power of strong coupling in theories with large distance modified gravity, New J. Phys. 8 (2006) 326 [hep-th/0610013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. G. Gabadadze, K. Hinterbichler and D. Pirtskhalava, Classical duals of derivatively self-coupled theories, Phys. Rev. D 85 (2012) 125007 [arXiv:1202.6364] [INSPIRE].

    ADS  Google Scholar 

  20. I. Ekeland, Legendre duality in nonconvex optimization and calculus of variations, SIAM J. Control Optim. 15 (1977) 905.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Nicolis, R. Rattazzi and E. Trincherini, The galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model, JHEP 09 (2003) 029 [hep-th/0303116] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Nicolis and R. Rattazzi, Classical and quantum consistency of the DGP model, JHEP 06 (2004) 059 [hep-th/0404159] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. G. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space, Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].

    ADS  Google Scholar 

  26. C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

    Article  ADS  Google Scholar 

  27. C. Burrage and D. Seery, Revisiting fifth forces in the Galileon model, JCAP 08 (2010) 011 [arXiv:1005.1927] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Padilla, P.M. Saffin et al., work in progress.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Padilla.

Additional information

ArXiv ePrint: 1204.1352

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padilla, A., Saffin, P.M. Classical duals, Legendre transforms and the Vainshtein mechanism. J. High Energ. Phys. 2012, 122 (2012). https://doi.org/10.1007/JHEP07(2012)122

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)122

Keywords

Navigation