Skip to main content
Log in

PGB pair production at LHC and ILC as a probe of the topcolor-assisted technicolor models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The topcolor-assisted technicolor (TC2) model predicts some light pseudo goldstone bosons (PGBs), which may be accessible at the LHC or ILC. In this work we study the pair productions of the charged or neutral PGBs at the LHC and ILC. For the productions at the LHC we consider the processes proceeding through gluon-gluon fusion and quark-antiquark annihilation, while for the productions at the ILC we consider both the electron-positron collision and the photon-photon collision. We find that in a large part of parameter space the production cross sections at both colliders can be quite large compared with the low standard model backgrounds. Therefore, in future experiments these productions may be detectable and allow for probing TC2 model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. Gonzalez-Garcia and Y. Nir, Neutrino masses and mixing: evidence and implications, Rev. Mod. Phys. 75 (2003) 345 [hep-ph/0202058] [INSPIRE].

    Article  ADS  Google Scholar 

  2. V. Barger, D. Marfatia and K. Whisnant, Progress in the physics of massive neutrinos, Int. J. Mod. Phys. E 12 (2003) 569 [hep-ph/0308123] [INSPIRE].

    Article  ADS  Google Scholar 

  3. A.Y. Smirnov, Neutrinos:. . . annus mirabilis’, hep-ph/0402264 [INSPIRE].

  4. S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976) 974 [INSPIRE].

    ADS  Google Scholar 

  5. S. Weinberg, Implications of dynamical symmetry breaking: an addendum, Phys. Rev. D 19 (1979) 1277 [INSPIRE].

    ADS  Google Scholar 

  6. L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [INSPIRE].

    ADS  Google Scholar 

  7. E. Farhi and L. Susskind, Technicolor, Phys. Rept. 74 (1981) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  8. C.T. Hill, Topcolor assisted technicolor, Phys. Lett. B 345 (1995) 483 [hep-ph/9411426] [INSPIRE].

    Article  ADS  Google Scholar 

  9. K.D. Lane and E. Eichten, Natural topcolor assisted technicolor, Phys. Lett. B 352 (1995) 382 [hep-ph/9503433] [INSPIRE].

    Article  ADS  Google Scholar 

  10. K.D. Lane, A new model of topcolor assisted technicolor, Phys. Lett. B 433 (1998) 96 [hep-ph/9805254] [INSPIRE].

    Article  ADS  Google Scholar 

  11. G. Cvetič, Top quark condensation, Rev. Mod. Phys. 71 (1999) 513 [hep-ph/9702381] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S.P. Martin, A tumbling top quark condensate model, Phys. Rev. D 46 (1992) 2197 [hep-ph/9204204] [INSPIRE].

    ADS  Google Scholar 

  14. S.P. Martin, Renormalizable top quark condensate models, Phys. Rev. D 45 (1992) 4283 [INSPIRE].

    ADS  Google Scholar 

  15. S.P. Martin, Selfbreaking technicolor, Nucl. Phys. B 398 (1993) 359 [hep-ph/9211292] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Lindner and D. Ross, Top condensation from very massive strongly coupled gauge bosons, Nucl. Phys. B 370 (1992) 30 [INSPIRE].

    Article  ADS  Google Scholar 

  17. R. Bönisch, Generating bootstrap fermion condensation and weak doublet mass splitting by gauge interactions, Phys. Lett. B 268 (1991) 394 [INSPIRE].

    Article  ADS  Google Scholar 

  18. C.T. Hill, D.C. Kennedy, T. Onogi and H.-L. Yu, Spontaneously broken technicolor and the dynamics of virtual vector technimesons, Phys. Rev. D 47 (1993) 2940 [hep-ph/9210233] [INSPIRE].

    ADS  Google Scholar 

  19. G.-L. Liu, Single top or bottom production associated with a scalar in γ-p collision as a probe of topcolor-assisted technicolor, Phys. Rev. D 82 (2010) 115032 [arXiv:1007.0464] [INSPIRE].

    ADS  Google Scholar 

  20. G.-L. Liu, Top quark decay t → cbb in topcolor-assisted technicolor models, Chin. Phys. Lett. 26 (2009) 101401 [arXiv:0903.2619] [INSPIRE].

    Article  ADS  Google Scholar 

  21. G.-L. Liu, Probing topcolor-assisted technicolor from lepton flavor violating processes in photon-photon collision at ILC, Science China 53 (2010) 1 [arXiv:1002.0659] [INSPIRE].

    Article  Google Scholar 

  22. G.-L. Liu, Probing topcolor-assisted technicolor models from like-sign τ pair production in eγ collisions, Commun. Theor. Phys. 55 (2011) 852 [arXiv:1005.1437] [INSPIRE].

    Article  ADS  Google Scholar 

  23. G.-L. Liu and H.-J. Zhang, Single top production associated with a neutral scalar at LHC in topcolor-assisted technicolor, Chinese Phys. C 32 (2008) 697 [arXiv:0708.1553] [INSPIRE].

    ADS  Google Scholar 

  24. J.-J. Cao, G.-L. Liu, J.M. Yang and H.-J. Zhang, Top-quark FCNC productions at CERN LHC in topcolor-assisted technicolor model, Phys. Rev. D 76 (2007) 014004 [hep-ph/0703308] [INSPIRE].

    ADS  Google Scholar 

  25. J.-J. Cao et al., SUSY-induced FCNC top-quark processes at the Large Hadron Collider, Phys. Rev. D 75 (2007) 075021 [hep-ph/0702264] [INSPIRE].

    ADS  Google Scholar 

  26. J.-J. Cao, G.-L. Liu and J.M. Yang, Probing topcolor-assisted technicolor from like-sign top pair production at CERN LHC, Phys. Rev. D 70 (2004) 114035 [hep-ph/0409334] [INSPIRE].

    ADS  Google Scholar 

  27. H.-J. Zhang, Top-quark FCNC decay t → cgg in topcolor-assisted technicolor model, Phys. Rev. D 77 (2008) 057501 [arXiv:0712.0151] [INSPIRE].

    ADS  Google Scholar 

  28. X.-L. Wang et al., Rare decays of the top quark in the one generation technicolor model, Phys. Rev. D 50 (1994) 5781 [INSPIRE].

    ADS  Google Scholar 

  29. C.-X. Yue, G.-R. Lu, J.-J. Cao, J.-T. Li and G.-L. Liu, Neutral top pion and top charm production in high-energy e + e collisions, Phys. Lett. B 496 (2000) 93 [hep-ph/0011112] [INSPIRE].

    Article  ADS  Google Scholar 

  30. ATLAS collaboration, ATLAS detector and physics performance: technical design report, 2, CERN-LHCC-99-015 (1999) [INSPIRE].

  31. CMS collaboration, CMS, the Compact Muon Solenoid: technical proposal, CERN-LHCC-94-38 (1994) [INSPIRE].

  32. LHC/LC Study Group collaboration, G. Weiglein et al., Physics interplay of the LHC and the ILC, Phys. Rept. 426 (2006) 47 [hep-ph/0410364] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Cagil, Pair production of charged scalars and lepton flavor violating signals in the littlest Higgs model at e + e colliders, Nucl. Phys. B 843 (2011) 46 [arXiv:1010.0102] [INSPIRE].

    Article  ADS  Google Scholar 

  34. L. Wang, W. Wang, J.M. Yang and H. Zhang, Higgs-pair production in littlest Higgs model with T-parity, Phys. Rev. D 76 (2007) 017702 [arXiv:0705.3392] [INSPIRE].

    ADS  Google Scholar 

  35. X.-F. Han, L. Wang and J.M. Yang, Higgs-pair production and decay in simplest little Higgs model, Nucl. Phys. B 825 (2010) 222 [arXiv:0908.1827] [INSPIRE].

    Article  ADS  Google Scholar 

  36. T. Han, B. Mukhopadhyaya, Z. Si and K. Wang, Pair production of doubly-charged scalars: neutrino mass constraints and signals at the LHC, Phys. Rev. D 76 (2007) 075013 [arXiv:0706.0441] [INSPIRE].

    ADS  Google Scholar 

  37. E. Asakawa, D. Harada, S. Kanemura, Y. Okada and K. Tsumura, Higgs boson pair production in new physics models at hadron, lepton and photon colliders, Phys. Rev. D 82 (2010) 115002 [arXiv:1009.4670] [INSPIRE].

    ADS  Google Scholar 

  38. A. Gutierrez-Rodriguez, M. Hernandez-Ruiz and O. Sampayo, Neutral Higgs boson pair-production and trilinear self-couplings in the MSSM at ILC and CLIC energies, Int. J. Mod. Phys. A 24 (2009) 5299 [arXiv:0903.1383] [INSPIRE].

    Article  ADS  Google Scholar 

  39. W. Ma, C.-X. Yue and Y.-Z. Wang, Pair production of neutral Higgs bosons from the left-right twin Higgs model at the ILC and LHC, Phys. Rev. D 79 (2009) 095010 [arXiv:0905.0597] [INSPIRE].

    ADS  Google Scholar 

  40. W.A. Bardeen, C.T. Hill and M. Lindner, Minimal dynamical symmetry breaking of the standard model, Phys. Rev. D 41 (1990) 1647 [INSPIRE].

    ADS  Google Scholar 

  41. T. Eguchi, A new approach to collective phenomena in superconductivity models, Phys. Rev. D 14 (1976) 2755 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. A.K. Leibovich and D.L. Rainwater, Top quark associated production of topcolor pions at hadron colliders, Phys. Rev. D 65 (2002) 055012 [hep-ph/0110218] [INSPIRE].

    ADS  Google Scholar 

  43. R.S. Chivukula, B. Coleppa, H.E. Logan, A. Martin and E.H. Simmons, LHC limits on the top-Higgs in models with strong top-quark dynamics, MSUHEP-110819, FERMILAB-PUB-11-386-T [Phys. Rev. D 84 (2011) 095022] [arXiv:1108.4000] [INSPIRE].

  44. H.-J. He and C.P. Yuan, New method for detecting charged pseudoscalars at colliders, Phys. Rev. Lett. 83 (1999) 28 [hep-ph/9810367] [INSPIRE].

    Article  ADS  Google Scholar 

  45. C. Balázs, H.-J. He and C.P. Yuan, QCD corrections to scalar production via heavy quark fusion at hadron colliders, Phys. Rev. D 60 (1999) 114001 [hep-ph/9812263] [INSPIRE].

    ADS  Google Scholar 

  46. H.-J. He, S. Kanemura and C.P. Yuan, Determining the chirality of Yukawa couplings via single charged Higgs boson production in polarized photon collision, Phys. Rev. Lett. 89 (2002) 101803 [hep-ph/0203090] [INSPIRE].

    Article  ADS  Google Scholar 

  47. H.-J. He, S. Kanemura and C.P. Yuan, Single charged Higgs boson production in polarized photon collision and the probe of new physics, Phys. Rev. D 68 (2003) 075010 [hep-ph/0209376] [INSPIRE].

    ADS  Google Scholar 

  48. A.K. Das and C. Kao, A two Higgs doublet model for the top quark, Phys. Lett. B 372 (1996) 106 [hep-ph/9511329] [INSPIRE].

    Article  ADS  Google Scholar 

  49. C.T. Hill and G.G. Ross, Models and new phenomenological implications of a class of pseudogoldstone bosons, Nucl. Phys. B 311 (1988) 253 [INSPIRE].

    Article  ADS  Google Scholar 

  50. C.T. Hill and G.G. Ross, Pseudogoldstone bosons and new macroscopic forces, Phys. Lett. B 203 (1988) 125 [INSPIRE].

    Article  ADS  Google Scholar 

  51. B. Balaji, Technipion contribution to b → , Phys. Rev. D 53 (1996) 1699 [hep-ph/9505313] [INSPIRE].

    ADS  Google Scholar 

  52. H. Pagels and S. Stokar, Pion decay constant, electromagnetic form factor, and quark electromagnetic self-energy in quantum chromodynamics, Phys. Rev. D 20 (1979) 2947 [INSPIRE].

    ADS  Google Scholar 

  53. C.T. Hill, Topcolor: top quark condensation in a gauge extension of the standard model, Phys. Lett. B 266 (1991) 419 [INSPIRE].

    Article  ADS  Google Scholar 

  54. G. Burdman, Scalars from top condensation models at hadron colliders, Phys. Rev. Lett. 83 (1999) 2888 [hep-ph/9905347] [INSPIRE].

    Article  ADS  Google Scholar 

  55. R.S. Chivukula, B.A. Dobrescu, H. Georgi and C.T. Hill, Top quark seesaw theory of electroweak symmetry breaking, Phys. Rev. D 59 (1999) 075003 [hep-ph/9809470] [INSPIRE].

    ADS  Google Scholar 

  56. H.-J. He, C.T. Hill and T.M. Tait, Top quark seesaw, vacuum structure and electroweak precision constraints, Phys. Rev. D 65 (2002) 055006 [hep-ph/0108041] [INSPIRE].

    ADS  Google Scholar 

  57. B. Balaji, Top decay in topcolor assisted technicolor, Phys. Lett. B 393 (1997) 89 [hep-ph/9610446] [INSPIRE].

    Article  ADS  Google Scholar 

  58. G. Burdman and D. Kominis, Model independent constraints on topcolor from R b , Phys. Lett. B 403 (1997) 101 [hep-ph/9702265] [INSPIRE].

    Article  ADS  Google Scholar 

  59. W. Loinaz and T. Takeuchi, Constraints on topcolor assisted technicolor models from vertex corrections, Phys. Rev. D 60 (1999) 015005 [hep-ph/9812377] [INSPIRE].

    ADS  Google Scholar 

  60. C.T. Hill and X.-M. Zhang, Z → bb versus dynamical electroweak symmetry breaking involving the top quark, Phys. Rev. D 51 (1995) 3563 [hep-ph/9409315] [INSPIRE].

    ADS  Google Scholar 

  61. C.-X. Yue, Y.-P. Kuang, X.-L. Wang and W.-B. Li, Restudy of the constraint on topcolor assisted technicolor models from R b , Phys. Rev. D 62 (2000) 055005 [hep-ph/0001133] [INSPIRE].

    ADS  Google Scholar 

  62. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    Article  ADS  Google Scholar 

  63. J.-J. Cao, Z.-H. Xiong and J.M. Yang, Probing topcolor assisted technicolor from top charm associated production at CERN LHC, Phys. Rev. D 67 (2003) 071701 [hep-ph/0212114] [INSPIRE].

    ADS  Google Scholar 

  64. CDF collaboration, T. Aaltonen et al., Top quark mass measurement in the lepton + jets channel using a matrix element method and in situ jet energy calibration, Phys. Rev. Lett. 105 (2010) 252001 [arXiv:1010.4582] [INSPIRE].

    Article  ADS  Google Scholar 

  65. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  66. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    Article  ADS  Google Scholar 

  67. I.F. Ginzburg, G. Kotkin, S. Panfil, V. Serbo and V.I. Telnov, Colliding γe and γγ beams based on the single pass e + e accelerators. 2: Polarization effects. Monochromatization improvement, Nucl. Instrum. Meth. A 219 (1984) 5 [INSPIRE].

    Article  Google Scholar 

  68. A. Doff and A.A. Natale, Strength of the trilinear Higgs boson coupling in technicolor models, Phys. Lett. B 641 (2006) 198 [hep-ph/0510201] [INSPIRE].

    Article  ADS  Google Scholar 

  69. H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [INSPIRE].

    Article  ADS  Google Scholar 

  70. J.F. Gunion and H.E. Haber, Higgs bosons in supersymmetric models. 1, Nucl. Phys. B 272 (1986) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  71. Q.-H. Cao, S. Kanemura and C.P. Yuan, Associated production of CP odd and charged Higgs bosons at hadron colliders, Phys. Rev. D 69 (2004) 075008 [hep-ph/0311083] [INSPIRE].

    ADS  Google Scholar 

  72. X.-L. Wang, W. Xu and L.-L. Du, The study of the charged top pion decay processes, Commun. Theor. Phys. 41 (2004) 737 [hep-ph/0403190] [INSPIRE].

    Google Scholar 

  73. C.-X. Yue, Q.-J. Xu, G.-L. Liu and J.-T. Li, Production and decay of the neutral top pion in high-energy e + e colliders, Phys. Rev. D 63 (2001) 115002 [hep-ph/0012332] [INSPIRE].

    ADS  Google Scholar 

  74. G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of pp → tt + 2 jets at next-to-leading order, Phys. Rev. Lett. 104 (2010) 162002 [arXiv:1002.4009] [INSPIRE].

    Article  ADS  Google Scholar 

  75. E.L. Berger, C.B. Jackson, S. Quackenbush and G. Shaughnessy, Calculation of W bb production via double parton scattering at the LHC, Phys. Rev. D 84 (2011) 074021 [arXiv:1107.3150] [INSPIRE].

    ADS  Google Scholar 

  76. C. Oleari and L. Reina, W bb production in POWHEG, JHEP 08 (2011) 061 [Erratum ibid. 11 (2011) 040] [arXiv:1105.4488] [INSPIRE].

    Article  ADS  Google Scholar 

  77. R.K. Ellis and S. Veseli, Strong radiative corrections to W bb production in pp collisions, Phys. Rev. D 60 (1999) 011501 [hep-ph/9810489] [INSPIRE].

    ADS  Google Scholar 

  78. W.-S. Hou, G.-L. Lin, C.-Y. Ma and C.P. Yuan, Probing flavor changing neutral Higgs couplings at LHC, Phys. Lett. B 409 (1997) 344 [hep-ph/9702260] [INSPIRE].

    Article  ADS  Google Scholar 

  79. G.-L. Lin, Like sign top pair production at LHC, hep-ph/9705424 [INSPIRE].

  80. F. Larios and F. Penunuri, FCNC production of same sign top quark pairs at the LHC, J. Phys. G 30 (2004) 895 [hep-ph/0311056] [INSPIRE].

    Article  ADS  Google Scholar 

  81. V.D. Barger, K.-M. Cheung, T. Han and R.J.N. Phillips, Strong W + W + scattering signals at pp supercolliders, Phys. Rev. D 42 (1990) 3052 [INSPIRE].

    ADS  Google Scholar 

  82. A. Kulesza and W.J. Stirling, Like sign W boson production at the LHC as a probe of double parton scattering, Phys. Lett. B 475 (2000) 168 [hep-ph/9912232] [INSPIRE].

    Article  ADS  Google Scholar 

  83. Y.P. Gouz and S.R. Slabospitsky, Double top production at hadronic colliders, Phys. Lett. B 457 (1999) 177 [hep-ph/9811330] [INSPIRE].

    Article  ADS  Google Scholar 

  84. X.-L. Wang, Q.-P. Qiao and Q.-L. Zhang, \( {H_{\text{TC}}}{\prod^0} \) and \( {\prod^{ + }}{\prod^{ - }} \) pair productions at the planned e + e colliders in the topcolor-assisted technicolor model, Phys. Rev. D 71 (2005) 095012 [hep-ph/0510394] [INSPIRE].

    ADS  Google Scholar 

  85. Q.-P. Qiao, Z. Li, X.-Q. Li and X.-L. Wang, The NLO corrections of \( {H_{\text{TC}}}{\prod^0} \) and \( {\prod^{ + }}{\prod^{ - }} \) pair production at the ILC in the TC2 model, Commun. Theor. Phys. 52 (2009) 311 [arXiv:0809.1134] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  86. A. Djouadi, W. Kilian, M. Muhlleitner and P.M. Zerwas, Testing Higgs selfcouplings at e + e linear colliders, Eur. Phys. J. C 10 (1999) 27 [hep-ph/9903229] [INSPIRE].

    ADS  Google Scholar 

  87. G. Bélanger and F. Boudjema, Probing quartic couplings of weak bosons through three vectors production at a 500-GeV NLC, Phys. Lett. B 288 (1992) 201 [INSPIRE].

    Article  ADS  Google Scholar 

  88. B. Sahin, Anomalous WWH couplings in γγ collision with initial beams and final state polarizations, J. Phys. G 36 (2009) 025012 [arXiv:0808.0842] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Li Liu.

Additional information

ArXiv ePrint: 1105.2607

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, GL., Zhang, HJ. & Zhou, P. PGB pair production at LHC and ILC as a probe of the topcolor-assisted technicolor models. J. High Energ. Phys. 2012, 81 (2012). https://doi.org/10.1007/JHEP07(2012)081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)081

Keywords

Navigation