Skip to main content
Log in

Scaling laws near the conformal window of many-flavor QCD

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We derive universal scaling laws for physical observables such as the critical temperature, the chiral condensate, and the pion decay constant as a function of the flavor number near the conformal window of many-flavor QCD in the chiral limit. We argue on general grounds that the associated critical exponents are all interrelated and can be determined from the critical exponent of the running gauge coupling at the Caswell-Banks-Zaks infrared fixed point. We illustrate our findings with the aid of nonperturbative functional Renormalization Group (RG) calculations and low-energy QCD models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.E. Caswell, Asymptotic Behavior of Nonabelian Gauge Theories to Two Loop Order, Phys. Rev. Lett. 33 (1974) 244 [SPIRES].

    Article  ADS  Google Scholar 

  2. T. Banks and A. Zaks, On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions, Nucl. Phys. B 196 (1982) 189 [SPIRES].

    Article  ADS  Google Scholar 

  3. V.A. Miransky and K. Yamawaki, Conformal phase transition in gauge theories, Phys. Rev. D 55 (1997) 5051 [Erratum-ibid. D 56 (1997) 3768] [hep-th/9611142] [SPIRES].

    ADS  Google Scholar 

  4. T. Appelquist, J. Terning and L.C.R. Wijewardhana, The Zero Temperature Chiral Phase Transition in SU(N) Gauge Theories, Phys. Rev. Lett. 77 (1996) 1214 [hep-ph/9602385] [SPIRES].

    Article  ADS  Google Scholar 

  5. T. Appelquist and S.B. Selipsky, Instantons and the chiral phase transition, Phys. Lett. B 400 (1997) 364 [hep-ph/9702404] [SPIRES].

    ADS  Google Scholar 

  6. T. Schafer and E.V. Shuryak, Instantons in QCD, Rev. Mod. Phys. 70 (1998) 323 [hep-ph/9610451] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Velkovsky and E.V. Shuryak, QCD with large number of quarks: Effects of the instanton anti-instanton pairs, Phys. Lett. B 437 (1998) 398 [hep-ph/9703345] [SPIRES].

    ADS  Google Scholar 

  8. T. Appelquist, A. Ratnaweera, J. Terning and L.C.R. Wijewardhana, The phase structure of an SU(N) gauge theory with N(f) flavors, Phys. Rev. D 58 (1998) 105017 [hep-ph/9806472] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. F. Sannino and J. Schechter, Chiral phase transition for SU(N) gauge theories via an effective Lagrangian approach, Phys. Rev. D 60 (1999) 056004 [hep-ph/9903359] [SPIRES].

    ADS  Google Scholar 

  10. M. Harada and K. Yamawaki, Vector manifestation of the chiral symmetry, Phys. Rev. Lett. 86 (2001) 757 [hep-ph/0010207] [SPIRES].

    Article  ADS  Google Scholar 

  11. M. Harada, M. Kurachi and K. Yamawaki, Meson masses in large-N(f) QCD from Bethe-Salpeter equation, Phys. Rev. D 68 (2003) 076001 [hep-ph/0305018] [SPIRES].

    ADS  Google Scholar 

  12. H. Gies and J. Jaeckel, Chiral phase structure of QCD with many flavors, Eur. Phys. J. C 46 (2006) 433 [hep-ph/0507171] [SPIRES].

    Article  ADS  Google Scholar 

  13. J. Braun and H. Gies, Running coupling at finite temperature and chiral symmetry restoration in QCD, Phys. Lett. B 645 (2007) 53 [hep-ph/0512085] [SPIRES].

    ADS  Google Scholar 

  14. J. Braun and H. Gies, Chiral phase boundary of QCD at finite temperature, JHEP 06 (2006) 024 [hep-ph/0602226] [SPIRES].

    Article  ADS  Google Scholar 

  15. E. Poppitz and M. Ünsal, Conformality or confinement: (IR)relevance of topological excitations, JHEP 09 (2009) 050 [arXiv:0906.5156] [SPIRES].

    Article  ADS  Google Scholar 

  16. E. Poppitz and M. Ünsal, Conformality or confinement (II): One-flavor CFTs and mixed-representation QCD, JHEP 12 (2009) 011 [arXiv:0910.1245] [SPIRES].

    Article  ADS  Google Scholar 

  17. A. Armoni, The Conformal Window from the Worldline Formalism, Nucl. Phys. B 826 (2010) 328 [arXiv:0907.4091] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. F. Sannino, QCD Dual, Phys. Rev. D 80 (2009) 065011 [arXiv:0907.1364] [SPIRES].

    ADS  Google Scholar 

  19. F. Sannino, Higher Representations Duals, Nucl. Phys. B 830 (2010) 179 [arXiv:0909.4584] [SPIRES].

    Article  ADS  Google Scholar 

  20. F. Sannino, Conformal Dynamics for TeV Physics and Cosmology, arXiv:0911.0931 [SPIRES].

  21. J.B. Kogut et al, The Scales Of Chiral Symmetry Breaking In Quantum Chromodynamics, Phys. Rev. Lett. 48 (1982) 1140 [SPIRES].

    Article  ADS  Google Scholar 

  22. R.V. Gavai, Simulations Of Gauge Theories With Many Fermions Using The Pseudofermion Method, Nucl. Phys. B 269 (1986) 530 [SPIRES].

    Article  ADS  Google Scholar 

  23. M. Fukugita, S. Ohta and A. Ukawa, Finite Temperature Phase Transitions in Lattice QCD for General Number of Flavors, Phys. Rev. Lett. 60 (1988) 178 [SPIRES].

    Article  ADS  Google Scholar 

  24. F.R. Brown et al., Lattice QCD with eight light quark flavors, Phys. Rev. D 46 (1992) 5655 [hep-lat/9206001] [SPIRES].

    ADS  Google Scholar 

  25. P.H. Damgaard, U.M. Heller, A. Krasnitz and P. Olesen, On lattice QCD with many flavors, Phys. Lett. B 400 (1997) 169 [hep-lat/9701008] [SPIRES].

    ADS  Google Scholar 

  26. Y. Iwasaki, K. Kanaya, S. Kaya, S. Sakai and T. Yoshie, Phase structure of lattice QCD for general number of flavors, Phys. Rev. D 69 (2004) 014507 [hep-lat/0309159] [SPIRES].

    ADS  Google Scholar 

  27. S. Catterall and F. Sannino, Minimal walking on the lattice, Phys. Rev. D 76 (2007) 034504 [arXiv:0705.1664] [SPIRES].

    ADS  Google Scholar 

  28. T. Appelquist, G.T. Fleming and E.T. Neil, Lattice Study of the Conformal Window in QCD-like Theories, Phys. Rev. Lett. 100 (2008) 171607 [Erratum-ibid. 102 (2009) 149902] [arXiv:0712.0609] [SPIRES].

    Article  ADS  Google Scholar 

  29. A. Deuzeman, M.P. Lombardo and E. Pallante, The physics of eight flavours, Phys. Lett. B 670 (2008) 41 [arXiv:0804.2905] [SPIRES].

    ADS  Google Scholar 

  30. A. Deuzeman, E. Pallante, M.P. Lombardo and E. Pallante, Hunting for the Conformal Window, PoS(LATTICE2008)056 [arXiv:0810.3117] [SPIRES].

  31. A. Deuzeman, M.P. Lombardo and E. Pallante, The physics of eight flavours, PoS(LATTICE2008)060 [arXiv:0810.1719] [SPIRES].

  32. A. Deuzeman, M.P. Lombardo and E. Pallante, Evidence for a conformal phase in SU(N) gauge theories, arXiv:0904.4662 [SPIRES].

  33. T. Appelquist, G.T. Fleming and E.T. Neil, Lattice Study of Conformal Behavior in SU(3) Yang-Mills Theories, Phys. Rev. D 79 (2009) 076010 [arXiv:0901.3766] [SPIRES].

    ADS  Google Scholar 

  34. Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder, Nearly conformal gauge theories in finite volume, Phys. Lett. B 681 (2009) 353 [arXiv:0907.4562] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. T. DeGrand, Finite-size scaling tests for SU(3) lattice gauge theory with color sextet fermions, Phys. Rev. D 80 (2009) 114507 [arXiv:0910.3072] [SPIRES].

    ADS  Google Scholar 

  36. Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder, Chiral symmetry breaking in nearly conformal gauge theories, arXiv:0911.2463 [SPIRES].

  37. E. Pallante, Strongly and slightly flavored gauge theories, arXiv:0912.5188 [SPIRES].

  38. R.D. Pisarski and F. Wilczek, Remarks on the Chiral Phase Transition in Chromodynamics, Phys. Rev. D 29 (1984) 338 [SPIRES].

    ADS  Google Scholar 

  39. R.S. Chivukula, A comment on the zero temperature chiral phase transition in SU(N) gauge theories, Phys. Rev. D 55 (1997) 5238 [hep-ph/9612267] [SPIRES].

    ADS  Google Scholar 

  40. J. Braun, Thermodynamics of QCD low-energy models and the derivative expansion of the effective action, Phys. Rev. D 81 (2010) 016008 [arXiv:0908.1543] [SPIRES].

    ADS  Google Scholar 

  41. F. Karsch, E. Laermann and A. Peikert, Quark mass and flavor dependence of the QCD phase transition, Nucl. Phys. B 605 (2001) 579 [hep-lat/0012023] [SPIRES].

    Article  ADS  Google Scholar 

  42. B.-J. Schaefer, J.M. Pawlowski and J. Wambach, The Phase Structure of the Polyakov–Quark-Meson Model, Phys. Rev. D 76 (2007) 074023 [arXiv:0704.3234] [SPIRES].

    ADS  Google Scholar 

  43. B.-J. Schaefer, M. Wagner and J. Wambach, Thermodynamics of (2 + 1)-flavor QCD: Confronting Models with Lattice Studies, Phys. Rev. D 81 (2010) 074013 [arXiv:0910.5628] [SPIRES].

    ADS  Google Scholar 

  44. R. Alkofer and L. von Smekal, The infrared behavior of QCD Green’s functions: Confinement, dynamical symmetry breaking and hadrons as relativistic bound states, Phys. Rept. 353 (2001) 281 [hep-ph/0007355] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  45. C.S. Fischer and R. Alkofer, Infrared exponents and running coupling of SU(N) Yang- Mills theories, Phys. Lett. B 536 (2002) 177 [hep-ph/0202202] [SPIRES].

    ADS  Google Scholar 

  46. C.S. Fischer, Infrared properties of QCD from Dyson-Schwinger equations, J. Phys. G 32 (2006) R253 [hep-ph/0605173] [SPIRES].

    ADS  Google Scholar 

  47. C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90 [SPIRES].

    ADS  Google Scholar 

  48. M. Reuter, Effective Average Actions and Nonperturbative Evolution Equations, hep-th/9602012 [SPIRES].

  49. D.F. Litim and J.M. Pawlowski, On gauge invariant Wilsonian flows, hep-th/9901063 [SPIRES].

  50. H. Gies, Introduction to the functional RG and applications to gauge theories, hep-ph/0611146 [SPIRES].

  51. J.M. Pawlowski, Aspects of the functional renormalisation group, Annals Phys. 322 (2007) 2831 [hep-th/0512261] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. H. Gies, J. Jaeckel and C. Wetterich, Towards a renormalizable standard model without fundamental Higgs scalar, Phys. Rev. D 69 (2004) 105008 [hep-ph/0312034] [SPIRES].

    ADS  Google Scholar 

  53. M. Reuter and C. Wetterich, Gluon condensation in nonperturbative flow equations, Phys. Rev. D 56 (1997) 7893 [hep-th/9708051] [SPIRES].

    ADS  Google Scholar 

  54. H. Gies, Running coupling in Yang-Mills theory: A flow equation study, Phys. Rev. D 66 (2002) 025006 [hep-th/0202207] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  55. T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The four-loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [SPIRES].

    ADS  Google Scholar 

  56. M. Czakon, The four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [SPIRES].

    Article  ADS  Google Scholar 

  57. T.A. Ryttov and F. Sannino, Supersymmetry Inspired QCD β-function, Phys. Rev. D 78 (2008) 065001 [arXiv:0711.3745] [SPIRES].

    ADS  Google Scholar 

  58. F. Sannino, Conformal Windows of SP(2N) and SO(N) Gauge Theories, Phys. Rev. D 79 (2009) 096007 [arXiv:0902.3494] [SPIRES].

    ADS  Google Scholar 

  59. D.U. Jungnickel and C. Wetterich, Effective action for the chiral quark-meson model, Phys. Rev. D 53 (1996) 5142 [hep-ph/9505267] [SPIRES].

    ADS  Google Scholar 

  60. B.-J. Schaefer and H.-J. Pirner, The equation of state of quarks and mesons in a renormalization group flow picture, Nucl. Phys. A 660 (1999) 439 [nucl-th/9903003] [SPIRES].

    ADS  Google Scholar 

  61. J. Braun, B. Klein and H.J. Pirner, Volume dependence of the pion mass in the quark-meson model, Phys. Rev. D 71 (2005) 014032 [hep-ph/0408116] [SPIRES].

    ADS  Google Scholar 

  62. O. Gromenko, Dynamical chiral symmetry breaking in SU(Nc) gauge theories with large number of fermion flavors, arXiv:0710.1591 [SPIRES].

  63. F. Sannino, Conformal Chiral Dynamics, Phys. Rev. D 80 (2009) 017901 [arXiv:0811.0616] [SPIRES].

    ADS  Google Scholar 

  64. P. Jakubczyk, P. Strack, A.A. Katanin and W. Metzner, Renormalization group theory for symmetry-broken phases near quantum critical points, Phys. Rev. B 77 (2008) 195120 [arXiv:0802.1868] [SPIRES].

    ADS  Google Scholar 

  65. D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov, Conformality Lost, Phys. Rev. D 80 (2009) 125005 [arXiv:0905.4752] [SPIRES].

    ADS  Google Scholar 

  66. S. Moroz and R. Schmidt, Nonrelativistic inverse square potential, scale anomaly and complex extension, Annals Phys. 325 (2010) 491 [arXiv:0909.3477] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  67. S. Weinberg, Implications of Dynamical Symmetry Breaking: An Addendum, Phys. Rev. D 19 (1979) 1277 [SPIRES].

    ADS  Google Scholar 

  68. L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg- Salam Theory, Phys. Rev. D 20 (1979) 2619 [SPIRES].

    ADS  Google Scholar 

  69. E. Farhi and L. Susskind, Technicolor, Phys. Rept. 74 (1981) 277 [SPIRES].

    Article  ADS  Google Scholar 

  70. B. Holdom, Raising the Sideways Scale, Phys. Rev. D 24 (1981) 1441 [SPIRES].

    ADS  Google Scholar 

  71. K. Yamawaki, M. Bando and K.-i. Matumoto, Scale Invariant Technicolor Model and a Technidilaton, Phys. Rev. Lett. 56 (1986) 1335 [SPIRES].

    Article  ADS  Google Scholar 

  72. T.W. Appelquist, D. Karabali and L.C.R. Wijewardhana, Chiral Hierarchies and the Flavor Changing Neutral Current Problem in Technicolor, Phys. Rev. Lett. 57 (1986) 957 [SPIRES].

    Article  ADS  Google Scholar 

  73. E. Eichten and K.D. Lane, Dynamical Breaking of Weak Interaction Symmetries, Phys. Lett. B 90 (1980) 125 [SPIRES].

    ADS  Google Scholar 

  74. D.K. Hong, S.D.H. Hsu and F. Sannino, Composite Higgs from higher representations, Phys. Lett. B 597 (2004) 89 [hep-ph/0406200] [SPIRES].

    ADS  Google Scholar 

  75. F. Sannino and K. Tuominen, Techniorientifold, Phys. Rev. D 71 (2005) 051901 [hep-ph/0405209] [SPIRES].

    ADS  Google Scholar 

  76. D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher representations versus electroweak precision measurements: Predictions for LHC, Phys. Rev. D 72 (2005) 055001 [hep-ph/0505059] [SPIRES].

    ADS  Google Scholar 

  77. D.D. Dietrich and F. Sannino, Walking in the SU(N), Phys. Rev. D 75 (2007) 085018 [hep-ph/0611341] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  78. T.A. Ryttov and F. Sannino, Conformal Windows of SU(N) Gauge Theories, Higher Dimensional Representations and The Size of The Unparticle World, Phys. Rev. D 76 (2007) 105004 [arXiv:0707.3166] [SPIRES].

    ADS  Google Scholar 

  79. O. Antipin and K. Tuominen, Resizing the Conformal Window: A β-function Ansatz, arXiv:0909.4879 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Braun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, J., Gies, H. Scaling laws near the conformal window of many-flavor QCD. J. High Energ. Phys. 2010, 60 (2010). https://doi.org/10.1007/JHEP05(2010)060

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2010)060

Keywords

Navigation