Skip to main content
Log in

New F-theory lifts II: permutation orientifolds and enhanced singularities

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper, a procedure is developed to construct compact F-theory fourfolds corresponding to perturbative IIB O7/O3 models on CICY threefolds with permutation involutions. The method is explained in generality, and then applied to specific examples where the involution permutes two Del Pezzo surfaces. The fourfold construction is successfully tested by comparing the D3 charges predicted by F-theory and IIB string theory.

The constructed fourfolds are then taken to the locus in moduli space where they have enhanced SU(5) singularities. A general, intuitive method is developed for engineering the desired singularities in Weierstrass models for complicated D7-brane setups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Wijnholt, F-Theory, GUTs and chiral matter, arXiv:0809.3878 [SPIRES].

  2. C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — II: experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. R. Donagi and M. Wijnholt, Model building with F-theory, arXiv:0802.2969 [SPIRES].

  5. R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, arXiv:0808.2223 [SPIRES].

  6. R. Tatar and T. Watari, GUT relations from string theory compactifications, Nucl. Phys. B 810 (2009) 316 [arXiv:0806.0634] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. R. Tatar, Y. Tsuchiya and T. Watari, Right-handed neutrinos in F-theory compactifications, Nucl. Phys. B 823 (2009) 1 [arXiv:0905.2289] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Font and L.E. Ibáñez, Yukawa structure from U(1) fluxes in F-theory grand unification, JHEP 02 (2009) 016 [arXiv:0811.2157] [SPIRES].

    Article  ADS  Google Scholar 

  9. J. Jiang, T. Li, D.V. Nanopoulos and D. Xie, Flipped SU(5) × U(1) X models from F-theory, Nucl. Phys. B 830 (2010) 195 [arXiv:0905.3394] [SPIRES].

    Article  ADS  Google Scholar 

  10. T. Li, SU(5) and SO(10) models from F-theory with natural Yukawa couplings, arXiv:0905.4563 [SPIRES].

  11. J. Jiang, T. Li, D.V. Nanopoulos and D. Xie, F-SU(5), arXiv:0811.2807 [SPIRES].

  12. C.-M. Chen and Y.-C. Chung, A note on local GUT models in F-theory, Nucl. Phys. B 824 (2010) 273 [arXiv:0903.3009] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. B. Andreas and G. Curio, From local to global in F-theory model building, arXiv:0902.4143 [SPIRES].

  14. E. Witten, PiTP lecture: string compactifications I, video lectures.

  15. J. Marsano, N. Saulina and S. Schäfer-Nameki, F-theory compactifications for supersymmetric GUTs, JHEP 08 (2009) 030 [arXiv:0904.3932] [SPIRES].

    Article  ADS  Google Scholar 

  16. R. Donagi and M. Wijnholt, Higgs bundles and UV completion in F-theory, arXiv:0904.1218 [SPIRES].

  17. A. Collinucci, M. Kreuzer, C. Mayrhofer and N.-O. Walliser, Four-modulus ’swiss cheese’ chiral models, JHEP 07 (2009) 074 [arXiv:0811.4599] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. R. Blumenhagen, V. Braun, T.W. Grimm and T. Weigand, GUTs in type IIB orientifold compactifications, Nucl. Phys. B 815 (2009) 1 [arXiv:0811.2936] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. J.P. Conlon and F. Quevedo, Kähler moduli inflation, JHEP 01 (2006) 146 [hep-th/0509012] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Cicoli, J.P. Conlon and F. Quevedo, General analysis of LARGE volume scenarios with string loop moduli stabilisation, JHEP 10 (2008) 105 [arXiv:0805.1029] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. E. Witten, Non-perturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343 [hep-th/9604030] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Collinucci, New F-theory lifts, JHEP 08 (2009) 076 [arXiv:0812.0175] [SPIRES].

    Article  ADS  Google Scholar 

  24. A. Collinucci, F. Denef and M. Esole, D-brane deconstructions in IIB orientifolds, JHEP 02 (2009) 005 [arXiv:0805.1573] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Sethi, C. Vafa and E. Witten, Constraints on low-dimensional string compactifications, Nucl. Phys. B 480 (1996) 213 [hep-th/9606122] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. D. Malyshev, Del Pezzo singularities and SUSY breaking, arXiv:0705.3281 [SPIRES].

  27. T.W. Grimm and A. Klemm, U(1) mediation of flux supersymmetry breaking, JHEP 10 (2008) 077 [arXiv:0805.3361] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, F-theory uplifts and GUTs, JHEP 09 (2009) 053 [arXiv:0906.0013] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. C. Cordova, Decoupling gravity in F-theory, arXiv:0910.2955 [SPIRES].

  30. A. Sen, F-theory and orientifolds, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150] [SPIRES].

    Article  ADS  Google Scholar 

  31. A. Sen, Orientifold limit of F-theory vacua, Phys. Rev. D 55 (1997) 7345 [hep-th/9702165] [SPIRES].

    ADS  Google Scholar 

  32. A. Sen, F-theory and the Gimon-Polchinski orientifold, Nucl. Phys. B 498 (1997) 135 [hep-th/9702061] [SPIRES].

    Article  ADS  Google Scholar 

  33. F. Denef, Les Houches lectures on constructing string vacua, arXiv:0803.1194 [SPIRES].

  34. A.M. Uranga, D-brane probes, RR tadpole cancellation and K-theory charge, Nucl. Phys. B 598 (2001) 225 [hep-th/0011048] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, in Modular functions of one variable IV, Lecture Notes in Mathematics 476, Springer-Velrag, Germany (1975), see pag. 33.

    Chapter  Google Scholar 

  36. M. Bershadsky et al., Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. A.P. Braun, A. Hebecker and H. Triendl, D7-brane motion from M-theory cycles and obstructions in the weak coupling limit, Nucl. Phys. B 800 (2008) 298 [arXiv:0801.2163] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Collinucci.

Additional information

ArXiv ePrint: 0906.0003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collinucci, A. New F-theory lifts II: permutation orientifolds and enhanced singularities. J. High Energ. Phys. 2010, 76 (2010). https://doi.org/10.1007/JHEP04(2010)076

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2010)076

Keywords

Navigation