Skip to main content
Log in

Flavoured quantum Boltzmann equations from cQPA

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We develop a Boltzmann-type quantum transport theory for interacting fermion and scalar fields including both flavour and particle-antiparticle mixing. Our formalism is based on the coherent quasiparticle approximation (cQPA) for the 2-point correlation functions, whose extended phase-space structure contains new spectral shells for flavour- and particle-antiparticle coherence. We derive explicit cQPA propagators and Feynman rules for the transport theory. In particular the nontrivial Wightman functions can be written as composite operators ∼ AF \( \mathcal{A} \), which generalize the usual Kadanoff-Baym ansatz. Our numerical results show that particle-antiparticle coherence can strongly influence CP-violating flavour mixing even for relatively slowly-varying backgrounds. Thus, unlike recently suggested, these correlations cannot be neglected when studying asymmetry generation due to time-varying mass transition, for example in electroweak-type baryogenesis models. Finally, we show that the cQPA coherence solutions are directly related to squeezed states in the more familiar operator formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Herranen, K. Kainulainen and P.M. Rahkila, Towards a kinetic theory for fermions with quantum coherence, Nucl. Phys. B 810 (2009) 389 [arXiv:0807.1415] [INSPIRE].

    Article  ADS  Google Scholar 

  2. M. Herranen, K. Kainulainen and P.M. Rahkila, Quantum kinetic theory for fermions in temporally varying backgrounds, JHEP 09 (2008) 032 [arXiv:0807.1435] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Herranen, K. Kainulainen and P.M. Rahkila, Kinetic theory for scalar fields with nonlocal quantum coherence, JHEP 05 (2009) 119 [arXiv:0812.4029] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Herranen, Quantum kinetic theory with nonlocal coherence, PhD Thesis, University of Jyväskylä, res. rep. 3/2009, arXiv:0906.3136 [INSPIRE].

  5. M. Herranen, K. Kainulainen and P.M. Rahkila, Coherent quasiparticle approximation (cQPA) and nonlocal coherence, J. Phys. Conf. Ser. 220 (2010) 012007 [arXiv:0912.2490] [INSPIRE].

    Article  ADS  Google Scholar 

  6. M. Herranen, K. Kainulainen and P.M. Rahkila, Coherent quantum Boltzmann equations from cQPA, JHEP 12 (2010) 072 [arXiv:1006.1929] [INSPIRE].

    Article  ADS  Google Scholar 

  7. R. Barbieri and A. Dolgov, Bounds on Sterile-neutrinos from Nucleosynthesis, Phys. Lett. B 237 (1990) 440 [INSPIRE].

    ADS  Google Scholar 

  8. R. Barbieri and A. Dolgov, Neutrino oscillations in the early universe, Nucl. Phys. B 349 (1991) 743 [INSPIRE].

    Article  ADS  Google Scholar 

  9. K. Kainulainen, Light singlet neutrinos and the primordial nucleosynthesis, Phys. Lett. B 244 (1990) 191 [INSPIRE].

    ADS  Google Scholar 

  10. K. Enqvist, K. Kainulainen and J. Maalampi, Resonant neutrino transitions and nucleosynthesis, Phys. Lett. B 249 (1990) 531 [INSPIRE].

    ADS  Google Scholar 

  11. K. Enqvist, K. Kainulainen and J. Maalampi, Refraction and oscillations of neutrinos in the early universe, Nucl. Phys. B 349 (1991) 754 [INSPIRE].

    Article  ADS  Google Scholar 

  12. K. Enqvist, K. Kainulainen and M.J. Thomson, Stringent cosmological bounds on inert neutrino mixing, Nucl. Phys. B 373 (1992) 498 [INSPIRE].

    Article  ADS  Google Scholar 

  13. D. Boyanovsky and C. Ho, Charged lepton mixing and oscillations from neutrino mixing in the early universe, Astropart. Phys. 27 (2007) 99 [hep-ph/0510214] [INSPIRE].

    Article  ADS  Google Scholar 

  14. C. Ho, D. Boyanovsky and H. de Vega, Neutrino oscillations in the early universe: A Real time formulation, Phys. Rev. D 72 (2005) 085016 [hep-ph/0508294] [INSPIRE].

    ADS  Google Scholar 

  15. V. Kuzmin, V. Rubakov and M. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    ADS  Google Scholar 

  16. A.G. Cohen, D. Kaplan and A. Nelson, Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci. 43 (1993) 27 [hep-ph/9302210] [INSPIRE].

    Article  ADS  Google Scholar 

  17. V. Rubakov and M. Shaposhnikov, Electroweak baryon number nonconservation in the early universe and in high-energy collisions, Usp. Fiz. Nauk 166 (1996) 493 [Phys. Usp. 39 (1996) 461] [hep-ph/9603208] [INSPIRE].

  18. M. Joyce, T. Prokopec and N. Turok, Nonlocal electroweak baryogenesis. Part 2: The Classical regime, Phys. Rev. D 53 (1996) 2958 [hep-ph/9410282] [INSPIRE].

    ADS  Google Scholar 

  19. M. Joyce, T. Prokopec and N. Turok, Electroweak baryogenesis from a classical force, Phys. Rev. Lett. 75 (1995) 1695 [Erratum ibid. 75 (1995) 3375] [hep-ph/9408339] [INSPIRE].

    Google Scholar 

  20. M. Joyce, T. Prokopec and N. Turok, Nonlocal electroweak baryogenesis. Part 1: Thin wall regime, Phys. Rev. D 53 (1996) 2930 [hep-ph/9410281] [INSPIRE].

    ADS  Google Scholar 

  21. J.M. Cline, M. Joyce and K. Kainulainen, Supersymmetric electroweak baryogenesis, JHEP 07 (2000) 018 [hep-ph/0006119] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J.M. Cline, M. Joyce and K. Kainulainen, Supersymmetric electroweak baryogenesis in the WKB approximation, Phys. Lett. B 417 (1998) 79 [Erratum ibid. B 448 (1999) 321] [hep-ph/9708393] [INSPIRE].

  23. J.M. Cline and K. Kainulainen, A New source for electroweak baryogenesis in the MSSM, Phys. Rev. Lett. 85 (2000) 5519 [hep-ph/0002272] [INSPIRE].

    Article  ADS  Google Scholar 

  24. K. Kainulainen, T. Prokopec, M.G. Schmidt and S. Weinstock, First principle derivation of semiclassical force for electroweak baryogenesis, JHEP 06 (2001) 031 [hep-ph/0105295] [INSPIRE].

    Article  ADS  Google Scholar 

  25. K. Kainulainen, T. Prokopec, M.G. Schmidt and S. Weinstock, Semiclassical force for electroweak baryogenesis: Three-dimensional derivation, Phys. Rev. D 66 (2002) 043502 [hep-ph/0202177] [INSPIRE].

    ADS  Google Scholar 

  26. K. Kainulainen, T. Prokopec, M.G. Schmidt and S. Weinstock, Quantum Boltzmann equations for electroweak baryogenesis including gauge fields, hep-ph/0201293 [INSPIRE].

  27. T. Prokopec, M.G. Schmidt and S. Weinstock, Transport equations for chiral fermions to order h bar and electroweak baryogenesis. Part 1, Annals Phys. 314 (2004) 208 [hep-ph/0312110] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  28. T. Prokopec, M.G. Schmidt and S. Weinstock, Transport equations for chiral fermions to order h-bar and electroweak baryogenesis. Part II, Annals Phys. 314 (2004) 267 [hep-ph/0406140] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  29. T. Konstandin, T. Prokopec and M.G. Schmidt, Kinetic description of fermion flavor mixing and CP-violating sources for baryogenesis, Nucl. Phys. B 716 (2005) 373 [hep-ph/0410135] [INSPIRE].

    Article  ADS  Google Scholar 

  30. T. Konstandin, T. Prokopec, M.G. Schmidt and M. Seco, MSSM electroweak baryogenesis and flavor mixing in transport equations, Nucl. Phys. B 738 (2006) 1 [hep-ph/0505103] [INSPIRE].

    Article  ADS  Google Scholar 

  31. V. Cirigliano, C. Lee, M.J. Ramsey-Musolf and S. Tulin, Flavored Quantum Boltzmann Equations, Phys. Rev. D 81 (2010) 103503 [arXiv:0912.3523] [INSPIRE].

    ADS  Google Scholar 

  32. V. Cirigliano, C. Lee and S. Tulin, Resonant Flavor Oscillations in Electroweak Baryogenesis, Phys. Rev. D 84 (2011) 056006 [arXiv:1106.0747] [INSPIRE].

    ADS  Google Scholar 

  33. B. Garbrecht, T. Prokopec and M.G. Schmidt, Coherent baryogenesis, Phys. Rev. Lett. 92 (2004) 061303 [hep-ph/0304088] [INSPIRE].

    Article  ADS  Google Scholar 

  34. B. Garbrecht, T. Prokopec and M.G. Schmidt, SO(10)-GUT coherent baryogenesis, Nucl. Phys. B 736 (2006) 133 [hep-ph/0509190] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    ADS  Google Scholar 

  36. A. Pilaftsis and T.E. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. Pilaftsis and T.E. Underwood, Electroweak-scale resonant leptogenesis, Phys. Rev. D 72 (2005) 113001 [hep-ph/0506107] [INSPIRE].

    ADS  Google Scholar 

  38. A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavor issues in leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [INSPIRE].

    Article  ADS  Google Scholar 

  39. E. Nardi, Y. Nir, E. Roulet and J. Racker, The Importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to leptogenesis in nonequilibrium QFT: Vertex contribution to the CP-violating parameter, Phys. Rev. D 80 (2009) 125027 [arXiv:0909.1559] [INSPIRE].

    ADS  Google Scholar 

  41. M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to leptogenesis in nonequilibrium QFT: Self-energy contribution to the CP-violating parameter, Phys. Rev. D 81 (2010) 085027 [arXiv:0911.4122] [INSPIRE].

    ADS  Google Scholar 

  42. M. Beneke, B. Garbrecht, M. Herranen and P. Schwaller, Finite Number Density Corrections to Leptogenesis, Nucl. Phys. B 838 (2010) 1 [arXiv:1002.1326] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Beneke, B. Garbrecht, C. Fidler, M. Herranen and P. Schwaller, Flavoured Leptogenesis in the CTP Formalism, Nucl. Phys. B 843 (2011) 177 [arXiv:1007.4783] [INSPIRE].

    Article  ADS  Google Scholar 

  44. A. Anisimov, D. Besak and D. Bödeker, Thermal production of relativistic Majorana neutrinos: Strong enhancement by multiple soft scattering, JCAP 03 (2011) 042 [arXiv:1012.3784] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. Anisimov, W. Buchmüller, M. Drewes and S. Mendizabal, Leptogenesis from Quantum Interference in a Thermal Bath, Phys. Rev. Lett. 104 (2010) 121102 [arXiv:1001.3856] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A. Anisimov, W. Buchmüller, M. Drewes and S. Mendizabal, Quantum Leptogenesis I, Annals Phys. 326 (2011) 1998 [arXiv:1012.5821] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  47. M. Herranen, K. Kainulainen and P.M. Rahkila, Flavour-coherent propagators and Feynman rules: Covariant cQPA formulation, arXiv:1108.2371 [INSPIRE].

  48. J.F. Koksma, T. Prokopec and M.G. Schmidt, Decoherence in an Interacting Quantum Field Theory: The Vacuum Case, Phys. Rev. D 81 (2010) 065030 [arXiv:0910.5733] [INSPIRE].

    ADS  Google Scholar 

  49. J.F. Koksma, T. Prokopec and M.G. Schmidt, Entropy and Correlators in Quantum Field Theory, Annals Phys. 325 (2010) 1277 [arXiv:1002.0749] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. J.F. Koksma, T. Prokopec and M.G. Schmidt, Decoherence in an Interacting Quantum Field Theory: Thermal Case, Phys. Rev. D 83 (2011) 085011 [arXiv:1102.4713] [INSPIRE].

    ADS  Google Scholar 

  51. A. Giraud and J. Serreau, Decoherence and thermalization of a pure quantum state in quantum field theory, Phys. Rev. Lett. 104 (2010) 230405 [arXiv:0910.2570] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. F. Gautier and J. Serreau, Quantum properties of a non-Gaussian state in the large-N approximation, Phys. Rev. D 83 (2011) 125004 [arXiv:1104.0421] [INSPIRE].

    ADS  Google Scholar 

  53. C.M. Caves and B.L. Schumaker, New formalism for two-photon quantum optics. 1. Quadrature phases and squeezed states, Phys. Rev. A 31 (1985) 3068 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  54. B.L. Schumaker, Quantum mechanical pure states with Gaussian wave functions, Phys. Rep. 135 (1986) 317.

    Article  MathSciNet  ADS  Google Scholar 

  55. L. Grishchuk and Y. Sidorov, Squeezed quantum states of relic gravitons and primordial density fluctuations, Phys. Rev. D 42 (1990) 3413 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  56. A. Albrecht, P. Ferreira, M. Joyce and T. Prokopec, Inflation and squeezed quantum states, Phys. Rev. D 50 (1994) 4807 [astro-ph/9303001] [INSPIRE].

    ADS  Google Scholar 

  57. J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. L. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [Sov. Phys. JETP 20 (1965) 1018] [INSPIRE].

  59. E. Calzetta and B.L. Hu, Nonequilibrium Quantum Field Theory, Cambridge Univ. Pr., U.K. (2008) pg. 535.

    Book  MATH  Google Scholar 

  60. L. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin, New York (1962).

    MATH  Google Scholar 

  61. J. Luttinger and J.C. Ward, Ground state energy of a many fermion system. 2., Phys. Rev. 118 (1960) 1417 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. J.M. Cornwall, R. Jackiw and E. Tomboulis, Effective Action for Composite Operators, Phys. Rev. D 10 (1974) 2428 [INSPIRE].

    ADS  Google Scholar 

  63. K.-c. Chou, Z.-b. Su, B.-l. Hao and L. Yu, Equilibrium and Nonequilibrium Formalisms Made Unified, Phys. Rept. 118 (1985) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. E. Calzetta and B.L. Hu, Nonequilibrium Quantum Fields: Closed Time Path Effective Action, Wigner Function and Boltzmann Equation, Phys. Rev. D 37 (1988) 2878 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  65. P. Danielewicz, Quantum Theory of Nonequilibrium Processes. 1., Annals Phys. 152 (1984) 239 [INSPIRE].

    Article  ADS  Google Scholar 

  66. S. Mrowczynski and U.W. Heinz, Towards a relativistic transport theory of nuclear matter, Annals Phys. 229 (1994) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  67. R. Kubo, Statistical mechanical theory of irreversible processes. I. General theory and simple applications in magnetic and conduction problems, J. Phys. Soc. Jap. 12 (1957) 570 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. R. Kubo, M. Yokota and S. Nakajima, Statistical Mechanical Theory Of Irreversible Processes. II, J. Phys. Soc. Jap. 12 (1957) 1203.

    Article  MathSciNet  ADS  Google Scholar 

  69. P.C. Martin and J.S. Schwinger, Theory of many particle systems. 1., Phys. Rev. 115 (1959) 1342 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pyry Matti Rahkila.

Additional information

ArXiv ePrint: 1108.2309

Alexander-von-Humboldt fellow. (Matti Herranen)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fidler, C., Herranen, M., Kainulainen, K. et al. Flavoured quantum Boltzmann equations from cQPA. J. High Energ. Phys. 2012, 65 (2012). https://doi.org/10.1007/JHEP02(2012)065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)065

Keywords

Navigation