Skip to main content
Log in

Sommerfeld effect in heavy quark chemical equilibration

Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The chemical equilibration of heavy quarks in a quark-gluon plasma proceeds via annihilation or pair creation. For temperatures T much below the heavy quark mass M, when kinetically equilibrated heavy quarks move very slowly, the annihilation in the colour singlet channel is enhanced because the quark and antiquark attract each other which increases their probability to meet, whereas the octet contribution is suppressed. This is the so-called Sommerfeld effect. It has not been taken into account in previous calculations of the chemical equilibration rate, which are therefore incomplete for T\( \alpha_s^2M \). We compute the leading-order equilibration rate in this regime; there is a large enhancement in the singlet channel, but the rate is dominated by the octet channel, and therefore the total effect is small. In the course of the computation we demonstrate how operators that represent the annihilation of heavy quarks in non-relativistic QCD can be incorporated into the imaginary-time formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.D. Moore and D. Teaney, How much do heavy quarks thermalize in a heavy ion collision?, Phys. Rev. C 71 (2005) 064904 [hep-ph/0412346] [INSPIRE].

    ADS  Google Scholar 

  2. S. Caron-Huot and G.D. Moore, Heavy quark diffusion in QCD and \( \mathcal{N}=4 \) SYM at next-to-leading order, JHEP 02 (2008) 081 [arXiv:0801.2173] [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Caron-Huot, M. Laine and G.D. Moore, A way to estimate the heavy quark thermalization rate from the lattice, JHEP 04 (2009) 053 [arXiv:0901.1195] [INSPIRE].

    Article  ADS  Google Scholar 

  4. A. Francis, O. Kaczmarek, M. Laine and J. Langelage, Towards a non-perturbative measurement of the heavy quark momentum diffusion coefficient, PoS(LATTICE 2011)202 [arXiv:1109.3941] [INSPIRE].

  5. D. Banerjee, S. Datta, R. Gavai and P. Majumdar, Heavy quark momentum diffusion coefficient from lattice QCD, Phys. Rev. D 85 (2012) 014510 [arXiv:1109.5738] [INSPIRE].

    ADS  Google Scholar 

  6. T.S. Biró and J. Zimányi, Quarkochemistry in relativistic heavy ion collisions, Phys. Lett. B 113 (1982) 6 [INSPIRE].

    ADS  Google Scholar 

  7. J. Rafelski and B. Müller, Strangeness production in the quark-gluon plasma, Phys. Rev. Lett. 48 (1982) 1066 [Erratum ibid. 56 (1986) 2334] [INSPIRE].

    Article  ADS  Google Scholar 

  8. T. Matsui, B. Svetitsky and L.D. McLerran, Strangeness production in ultrarelativistic heavy ion collisions. 1. Chemical kinetics in the quark-gluon plasma, Phys. Rev. D 34 (1986) 783 [Erratum ibid. D 37 (1988) 844] [INSPIRE].

    ADS  Google Scholar 

  9. A. Sommerfeld, Über die Beugung und Bremsung der Elektronen (in German), Annalen Phys. 403 (1931) 257.

    Article  ADS  Google Scholar 

  10. L.D. Landau and E.M. Lifshitz, Quantum mechanics, non-relativistic theory, third edition, § 136, Butterworth-Heinemann, Oxford U.K. (1977).

    Google Scholar 

  11. V.S. Fadin, V.A. Khoze and T. Sjöstrand, On the threshold behavior of heavy top production, Z. Phys. C 48 (1990) 613 [INSPIRE].

    ADS  Google Scholar 

  12. M. Beneke, P. Falgari, S. Klein, J. Piclum, C. Schwinn, M. Ubiali and F. Yan, The total top-pair production cross section at NNLL, arXiv:1208.5578 [INSPIRE].

  13. U. Langenfeld, S.-O. Moch and T. Pfoh, QCD threshold corrections for gluino pair production at hadron colliders, JHEP 11 (2012) 070 [arXiv:1208.4281] [INSPIRE].

    Article  ADS  Google Scholar 

  14. W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen and I. Niessen, NNLL resummation for squark-antisquark production, arXiv:1112.5057 [INSPIRE].

  15. J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].

    ADS  Google Scholar 

  16. J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].

    ADS  Google Scholar 

  17. J.L. Feng, M. Kaplinghat and H.-B. Yu, Sommerfeld enhancements for thermal relic dark matter, Phys. Rev. D 82 (2010) 083525 [arXiv:1005.4678] [INSPIRE].

    ADS  Google Scholar 

  18. A. Hryczuk, R. Iengo and P. Ullio, Relic densities including Sommerfeld enhancements in the MSSM, JHEP 03 (2011) 069 [arXiv:1010.2172] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Strumia, Sommerfeld corrections to type-II and III leptogenesis, Nucl. Phys. B 809 (2009) 308 [arXiv:0806.1630] [INSPIRE].

    Article  ADS  Google Scholar 

  20. D. Bödeker and M. Laine, Heavy quark chemical equilibration rate as a transport coefficient, JHEP 07 (2012) 130 [arXiv:1205.4987] [INSPIRE].

    Article  ADS  Google Scholar 

  21. W.E. Caswell and G.P. Lepage, Effective Lagrangians for bound state problems in QED, QCD and other field theories, Phys. Lett. B 167 (1986) 437 [INSPIRE].

    ADS  Google Scholar 

  22. G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997)5853] [hep-ph/9407339] [INSPIRE].

    ADS  Google Scholar 

  23. J. Frenkel and J.C. Taylor, Hard thermal QCD, forward scattering and effective actions, Nucl. Phys. B 374 (1992) 156 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. E. Braaten and R.D. Pisarski, Simple effective Lagrangian for hard thermal loops, Phys. Rev. D 45 (1992) 1827 [INSPIRE].

    ADS  Google Scholar 

  25. M. Laine, A resummed perturbative estimate for the quarkonium spectral function in hot QCD, JHEP 05 (2007) 028 [arXiv:0704.1720] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R.D. Pisarski, Scattering amplitudes in hot gauge theories, Phys. Rev. Lett. 63 (1989) 1129 [INSPIRE].

    Article  ADS  Google Scholar 

  27. I. Kuznetsova, D. Habs and J. Rafelski, Pion and muon production in e , e + , γ plasma, Phys. Rev. D 78 (2008) 014027 [arXiv:0803.1588] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Laine.

Additional information

ArXiv ePrint: 1210.6153

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bödeker, D., Laine, M. Sommerfeld effect in heavy quark chemical equilibration. J. High Energ. Phys. 2013, 37 (2013). https://doi.org/10.1007/JHEP01(2013)037

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)037

Keywords

Navigation