Skip to main content
Log in

Tuberculosis detection by giant African pouched rats

  • Published:
The Behavior Analyst Aims and scope Submit manuscript

Abstract

In recent years, operant discrimination training procedures have been used to teach giant African pouched rats to detect tuberculosis (TB) in human sputum samples. This article summarizes how the rats are trained and used operationally, as well as their performance in studies published to date. Available data suggest that pouched rats, which can evaluate many samples quickly, are sufficiently accurate in detecting TB to merit further investigation as a diagnostic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ani, A., Okpe, S., Akambi, M., Ejelionu, E., Ykubu, B., Owolodum, O., et al. (2009). Comparison of a DNA based PCR method with conventional methods for the detection of M. tuberculosis in Jos, Nigeria. Journal of Infection in Developing Countries, 3, 470–475.

    PubMed  Google Scholar 

  • Burgess, A. L., Fitzgerald, D. W., Severe, P., Joseph, P., Noel, E., Rastogi, N., et al. (2001). Integration of tuberculosis screening at an HIV voluntary counseling and testing centre in Haiti. Aids, 15, 1875–1879.

    Article  PubMed  Google Scholar 

  • Corbett, E. L., Watt, C. J., Walker, N., Maher, D., Williams, B. G., .Raviglione, M. C., et al. (2003). The growing burden of tuberculosis: Global trends and interactions with the HIV epidemic. Archives of Internal Medicine, 163, 1009–1021.

    Article  PubMed  Google Scholar 

  • Critchfield, T. (2011). Translational contributions of the experimental analysis of behavior. The Behavior Analyst, 34, 3–17.

    PubMed  PubMed Central  Google Scholar 

  • Dye, C., Watt, C. J., Bleed, D. M., Hosseini, S. M., & Raviglione, M. C. (2005). Evolution of tuberculosis control and prospects for reducing tuberculosis incidence, prevalence, and deaths globally. Journal of the American Medical Association, 293, 2767–2775.

    Article  PubMed  Google Scholar 

  • Fujika, A. (2005). AFT microscopy training. Tokyo: Research Institute of Tuberculosis.

    Google Scholar 

  • Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.

    Google Scholar 

  • Hargreaves, N. J., Kadzakumanja, O., Phiri, S., Nyangulu, D. S., Salaniponi, F. M. L., Harries, A. D., et al. (2001). What causes smear-negative pulmonary tuberculosis in Malawi, an area of high HIV seroprevalence? International Journal of Tuberculosis and Lung Disease, 5, 113–122.

    PubMed  Google Scholar 

  • Johnston, J. M., & Pennypacker, H. S. (2009). Strategies and tactics of behavioral research (3rd ed.). New York: Routledge.

    Google Scholar 

  • Jones, B. M. (2011). Applied behavior analysis is ideal for the development of a land mine detection technology using animals. The Behavior Analyst, 34, 55–73.

    PubMed  PubMed Central  Google Scholar 

  • Laraway, S., Snycerski, S., Michael, J., & Poling, A. (2003). Motivating operations and terms to describe them: Some further refinements. Journal of Applied Behavior Analysis, 36, 407–414.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mace, F. C., & Critchfield, T. S. (2010). Translational research in behavior analysis: Historical traditions and imperative for the future. Journal of the Experimental Analysis of Behavior, 93, 293–312.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moser, E., & McCulloch, M. (2010). Canine scent detection of human cancers: A review of methods and accuracy. Journal of Veterinary Behavior, 5, 145–152.

    Article  Google Scholar 

  • Pai, M., Ramsey, A., & O’Brien, R. (2008). Evidence-based tuberculosis diagnosis. PLoS Medicine, 5, e156.

    Article  Google Scholar 

  • Poling, A. (2010). Looking to the future: Will behavior analysis survive and prosper? The Behavior Analyst, 33, 7–17.

    PubMed  PubMed Central  Google Scholar 

  • Poling, A., Simmons, M. A., & Appel, J. B. (1978). Morphine and shock detection: Effects on shock intensity. Communications in Psychopharmacology, 2, 333–336.

    PubMed  Google Scholar 

  • Poling, A., Weetjens, B. J., Cox, C., Beyene, N., Bach, H., & Sully, A. (2010). Teaching giant African pouched rats to find land mines: Operant conditioning with real consequences. Behavior Analysis in Practice, 3, 19–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Poling, A., Weetjens, B., Cox, C., Beyene, N., & Sully, A. (2010). Using giant African pouched rats (Cricetomys gambianus) to detect land mines. The Psychological Record, 60, 715–727.

    Google Scholar 

  • Poling, A., Weetjens, B. J., Cox, C., Beyene, N. W., Bach, H., & Sully, A. (2011). Using trained pouched rats to detect land mines: Another victory for operant conditioning. Journal of Applied Behavior Analysis, 44, 351–355.

    Article  PubMed  PubMed Central  Google Scholar 

  • Poling, A., Weetjens, B., Cox, C., Mgode, G., Jubitana, M., Kazwala, R., et al. (2010). Using giant African rats to detect tuberculosis: 2009 findings. American Journal of Tropical Medicine and Hygiene, 83, 1308–1310.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramsay, A., Cuevas, L. E., Mundy, C. J. F., Nathanson, C.-M., Chirambo, P., et al. (2009). New policies, new technologies: Modelling the potential for improved smear microscopy services in Malawi. PLoS ONE, 4(11), e7760.

    Article  Google Scholar 

  • Reid, M. J. A., & Shah, N. S. (2009). Approaches to tuberculosis screening and diagnosis in people with HIV in resource-limited settings. Lancet Infectious Diseases, 9, 173–184.

    Article  PubMed  Google Scholar 

  • Steingart, K. R., Henry, M., Ng, V., Hopewell, P. C., Ramsay, A., Cunningham, J., et al. (2006). Fluorescence versus conventional sputum smear microscopy for tuberculosis: A systematic review. Lancet Infectious Diseases, 6, 570–581.

    Article  PubMed  Google Scholar 

  • Weetjens, B. J., Mgode, G. F., Davis, B. K., Cox, C., & Beyene, N. W. (2009). African giant rats for tuberculosis detection: A novel diagnostic technology. In Global forum update on research for health (Vol. 6, pp. 39–42). Geneva: Global Forum for Health Research.

    Google Scholar 

  • Weetjens, B. J., Mgode, G. F., Machang’u, R. S., Kazwala, R., Mfinanga, G., Lwilla, F., et al. (2009). African pouched rats for the detection of pulmonary tuberculosis in sputum samples. International Journal of Tuberculosis and Lung Disease, 13, 737–743.

    PubMed  Google Scholar 

  • World Health Organization. (2008). Global tuberculosis control: Epidemiology, strategy, financing. Geneva: WHO Press.

    Google Scholar 

  • World Health Organization. (2009a). Pathways to better diagnostics for tuberculosis: a blueprint for the development of TB diagnostics by the new diagnostics working group of the Stop TB Partnership. Retrieved from http://www.stoptb.org/wg/tb_hiv/assets/documents/Fact%20 sheet%20HIV%20TB%20for%20IAS%20FINAL.pdf

  • World Health Organization. (2009b). TB/HIV facts. Retrieved from http://www.stoptb.org/wg/new_diagnostics/assets/documents/BluePrintTB_annex_web.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Poling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poling, A., Weetjens, B., Cox, C. et al. Tuberculosis detection by giant African pouched rats. BEHAV ANALYST 34, 47–54 (2011). https://doi.org/10.1007/BF03392234

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03392234

Key words

Navigation