Skip to main content
Log in

Glutathione deficiency potentiates manganese-induced increases in compounds associated with high-energy phosphate degradation in discrete brain areas of young and aged rats

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Aging is a factor known to increase neuronal vulnerability to oxidative stress, which is widely accepted as a mechanism of manganese-induced neuronal damage. We previously showed that subchronic exposure to manganese induced greater energy impairment (as revealed by increases in hypoxanthine, xanthine and uric acid levels) in the striatum and brainstem of aged rats vs young rats. This study shows that inhibition of glutathione (GSH) synthesis, by means of buthionine (SR) sulfoximine, decreased GSH levels and increased the ascorbic acid oxidation status in the striatum and limbic forebrain of both young and aged rats. In addition, inhibition of GSH synthesis greatly potentiated the manganese-induced increase in inosine, hypoxanthine, xanthine and uric acid levels in both regions of aged rats; moreover, inhibition of GSH synthesis significantly increased inosine, hypoxanthine, xanthine and uric acid levels in both regions of young rats, compared with the manganese-treated group. These results suggest that an impairment in the neuronal antioxidant system renders young rats susceptible to manganese-induced energetic impairment, and further support the hypothesis that an impairment in this system plays a permissive role in the increase of neuronal vulnerability that occurs with aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rice M.E.: Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci. 23: 209–216, 2000.

    Article  CAS  PubMed  Google Scholar 

  2. Lyrer P., Landolt H., Kabiersch A., Langemann H., Kaeser H.: Levels of low molecular scavengers in the rat brain during focal ischemia. Brain Res. 567: 317–320, 1991.

    Article  CAS  PubMed  Google Scholar 

  3. Uemura Y., Miller J.M., Matson W.R., Beal M.F.: Neurochemical analysis of focal ischemia in rats. Stroke 22: 1548–1553, 1991.

    Article  CAS  PubMed  Google Scholar 

  4. Rice M.E., Lee J., Choy Y.: High levels of ascorbic acid, not glutathione, in the CNS of anoxia-tolerant reptiles contrasted with levels in anoxia-intolerant species. J. Neurochem. 64: 1790–1799, 1995.

    Article  CAS  PubMed  Google Scholar 

  5. Martenson J., Meister A.: Glutathione deficiency decreases tissue ascorbate levels in newborn rats: ascorbate spares glutathione and protects. Proc. Natl. Acad. Sci. USA 88: 4656–4660, 1991.

    Article  Google Scholar 

  6. Winkler B.S.: Unequivocal evidence in support of the nonen-zymatic redox coupling between glutathione/glutathione di-sulfide and ascorbic acid/dehydroascorbic acid. Biochim. Biophys. Acta 1117: 287–290, 1992.

    Article  CAS  PubMed  Google Scholar 

  7. Millar J.: The nitric oxide/ascorbate cycle: how neurones may control their own oxygen supply. Med. Hypotheses 45: 21–26, 1995.

    Article  CAS  PubMed  Google Scholar 

  8. Savory J., Rao J.K., Huang Y., Letada P.R., Herman M.M.: Age-related hippocampal changes in Bcl-2: Bax ratio, oxida-tive stress, redox active iron and apoptosis associated with aluminum-induced neurodegeneration: increased susceptibility with aging. Neurotoxicology 20: 805–817, 1999.

    CAS  PubMed  Google Scholar 

  9. Ueda S., Aikawa M., Ishizuya-Oka A., Yamahoka S., Koibuchi N., Yoshimoto K.: Age-related dopamine deficiency in the mesostriatal dopamine system of zitter mutant rats: regional fiber vulnerability in the striatum and olfactory tubercle. Neuroscience 95: 389–398, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Azhar G., Liu L., Zhang X., Wej J.Y.: Influence of age in hypoxia/reoxygenation-induced DNA fragmentation and bcl-2, bcl-xl, bax and fas in the rat heart and brain. Mech. Ageing Dev. 112: 5–25, 1999.

    Article  CAS  PubMed  Google Scholar 

  11. Winkler B.S., Boulton M.E., Gottsch J.D., Sternberg P.: Oxidative damage and age-related macular degeneration. Mol. Vis. 5: 32–43, 1999.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Dawson R. Jr, Beal M.F., Bondy S.C., Di Monte D.A., Isom G.E.: Excitotoxins, aging, and environmental neurotoxins: implication for understanding human neurodegenerative diseases. Toxicol. Appl. Pharmacol. 134: 1–17, 1995.

    Article  CAS  PubMed  Google Scholar 

  13. Brewer G.J.: Age-related toxicity to lactate, glutamate and beta-amyloid in cultured adult neurons. Neurobiol. Aging 19: 561–568, 1998.

    Article  CAS  PubMed  Google Scholar 

  14. Desole M.S., Esposito G., Enrico P., Miele M., Fresu L., De Natale G., Miele E., Grella G.: Effect of ageing on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxic effects on striatum and brainstem in the rat. Neurosci. Lett. 159: 143–146, 1993.

    Article  CAS  PubMed  Google Scholar 

  15. Desole M.S., Esposito G., Migheli R., Fresu L., Sircana S., Zangani D., Miele M., Miele E.: Cellular defense mechanism in the striatum of young and aged rats subchronically exposed to manganese. Neuropharmacology 34: 289–295, 1995.

    Article  CAS  PubMed  Google Scholar 

  16. Roth J.A., Feng L., Walowitz J., Browne R.W.: Manganese-induced rat pheochromocytoma (PC12) cell death is independent of caspase activation. J. Neurosci. Res. 61: 162–171, 2000.

    Article  CAS  PubMed  Google Scholar 

  17. Hillered L., Kotwica Z., Ungerstedt U.: Interstitial and cere-brospinal fluid levels of energy-related metabolites after middle cerebral artery occlusion in rats. Res. Exp. Med. 191: 219–225, 1991.

    Article  CAS  Google Scholar 

  18. Miele M., Serra P.A., Esposito G., Delogu M.R., Migheli R., Rocchitta G., Desole M.S.: Glutamate and catabolites of high-energy phosphates in the striatum and in the brainstem of young and aged rats subchronically exposed to manganese. Aging Clin. Exp. Res. 12: 393–397, 2000.

    Article  CAS  Google Scholar 

  19. Desole M.S., Esposito G., Migheli R., Sircana S., Delogu M.R., Fresu L., Miele M., De Natale G., Miele E.: Glutathione deficiency potentiates manganese toxicity in rat striatum and brainstem and in PC12 cells. Pharmacol. Res. 36: 285–292, 1997.

    Article  CAS  PubMed  Google Scholar 

  20. Jain A., Martenson J., Stole E., Auld P.A.M., Meister A.: Glutathione deficiency leads to mitochondrial damage in brain. Proc. Natl. Acad. Sci. USA 88: 1913–1917, 1991.

    Article  CAS  PubMed  Google Scholar 

  21. Liccione J.J., Maines M.D.: Selective vulnerability of glutath-ione metabolism and cellular defense mechanisms in rat striatum to manganese. J. Pharmacol. Exp. Ther. 247: 156–161, 1988.

    CAS  PubMed  Google Scholar 

  22. Desole M.S., Esposito G., Fresu L., Migheli R., Enrico P., Mura M.A., De Natale G., Miele E., Miele M.: Effects of morphine treatment and withdrawal on striatal and limbic monoaminergic activity and ascorbic acid oxidation in the rat. Brain Res. 723: 154–161, 1996.

    Article  CAS  PubMed  Google Scholar 

  23. Anderson M.E.: Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 113: 348–355, 1985.

    Google Scholar 

  24. Sasame H.A., Boyd M.R.: Paradoxical effects of cobaltous chloride and salts of other divalent metals on tissue levels of reduced glutathione and microsomal mixed-function oxidase components. J. Pharmacol. Exp. Ther. 250: 718–724, 1978.

    Google Scholar 

  25. Noack H., Lindenau J., Rothe F., Asayama K., Wolf G.: Differential expression of superoxide dismutase isoform in neuronal and glial compartments in the course of excitotoxi-cally mediated neurodegeneration: relation to oxidative and nitrergic stress. Glia 23: 285–297, 1998.

    Article  CAS  PubMed  Google Scholar 

  26. Zoref-Shani E., Bromberg Y., Shirin C., Sidi Y., Sperling O.: Metabolic fate of hypoxanthine and inosine in cultured car-diomyocites. J. Mol. Cell. Cardiol. 24: 183–189, 1992.

    Article  CAS  PubMed  Google Scholar 

  27. Brosh S., Zoref-Shani E., Danzinger E., Bromberg Y., Sperling O., Sidi Y.: Adenine nucleotide metabolism in primary rat neuronal cultures. Int. J. Biochem. Cell. Biol. 28: 319–328, 1996.

    Article  CAS  PubMed  Google Scholar 

  28. Zoref-Shani E., Bromberg Y., Lilling G., Brosh S., Sidi Y., Sperling O: Developmental changes in purine nucleotide metabolism in cultured rat astroglia. Int. J. Dev. Neurosci. 13: 887–896, 1995.

    Article  CAS  PubMed  Google Scholar 

  29. Andersen J.K., Mo J.Q., Hom D.G., Lee F.Y., Harnish P., Hamill R.W., McNeill T.H.: Effect of buthionine sulfoximine, a synthesis inhibitor of the antioxidant glutathione, on the murine nigro-striatal neurons. J. Neurochem. 67: 2164–2171, 1996.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Desole M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desole, M.S., Serra, P.A., Esposito, G. et al. Glutathione deficiency potentiates manganese-induced increases in compounds associated with high-energy phosphate degradation in discrete brain areas of young and aged rats. Aging Clin Exp Res 12, 470–477 (2000). https://doi.org/10.1007/BF03339879

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03339879

Key words

Navigation